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Genetic characterization of Chinese indigenous pig breeds is essential to promote
scientific conservation and sustainable development of pigs. Here, we systematically
surveyed the genomes of 75 unrelated Diannan small-ear (DSE) pigs from three diverse
regions (Yingjiang County, Jinping County, and Sipsongpanna in Yunnan Province)
to describe their population structures, genetic diversity, inbreeding coefficients, and
selection signatures. First, these individuals were sequenced and genotyped using the
genome reducing and sequencing (GGRS) protocol. A total of 438,038 autosomal
single-nucleotide polymorphisms (SNPs) were obtained and used for subsequent
statistical analysis. The results showed that these DSE pigs were clearly differentiated
into three separate clades revealed by the population structure and principal component
analysis, which is consistent with their geographical origins. Diannan small-ear pigs
owned lower genetic diversity when compared with some other pig breeds, which
demonstrated the need to strengthen the conservation strategies for DSE pigs. In
addition, the inbreeding coefficients based on runs of homozygosity (ROH) length (FROH)
were calculated in each ROH length categories, respectively. And the results indicated
that the ancient (up to 50 generations ago) inbreeding had greater impacts than recent
(within the last five generations) inbreeding within DSE pigs. Some candidate selection
signatures within the DSE pig population were detected through the ROH islands and
integrated haplotype homozygosity score (iHS) methods. And genes associated with
meat quality (COL15A1, RPL3L, and SLC9A3R2), body size (PALM2-AKAP2, NANS,
TRAF7, and PACSIN1), adaptability (CLDN9 and E4F1), and appetite (GRM4) were
identified. These findings can help to understand the genetic characteristics and provide
insights into the molecular background of special phenotypes of DSE pigs to promote
conservation and sustainability of the breed.

Keywords: Diannan small-ear pigs, population structure, genetic diversity, inbreeding coefficients, selection
signatures
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INTRODUCTION

In China, there were more than 80 indigenous pig breeds
registered according to the second national census of local
pig breeds (2004). Diannan small-ear (DSE) pigs, a specific
Chinese native pig breed, are raised in the southern areas
of Yunnan province with subtropical climate. The indigenous
animals under subtropical climate exhibit heritable adaptations
to high temperature and humidity due to natural selection.
Therefore, DSE pigs might be the ideal animal models for the
research on the diseases related to human. Besides, DSE pigs are
well-known for their better meat quality and more fat deposition
than Western pigs (Wang et al., 2015). During the long-term
breeding process, DSE pigs have been naturally differentiated
into mini type and large type (Liu, 2010). And the common
types of coat color in DSE pigs include both whole-body black
and six-white-point (Lü et al., 2016). Diannan small-ear pigs
own the abundant phenotypic traits and superior commercial
traits so that it is regarded as a valuable genetic resource, which
deserves to be efficiently utilized for scientific conservation and
commercial exploitation.

In recent years, the demand in China for pork products
has been growing continuously because of the steady rise in
China’s population and the rapid social development (McOrist
et al., 2011). Although DSE pigs have better meat quality than
Western pigs, they have the characteristic of lower growth
rate that cannot meet the market demands (Wang et al.,
2015). The extensive introduction of leaner Western breeds
into China in the latter part of the last century resulted in a
sharp decline in the number of DSE pigs. It has been more
difficult to find large populations of DSE pigs. Faced with the
condition mentioned above, the Chinese central government
had launched a national conservation program for protecting
DSE pigs (National Commission of Animal Genetic Resources
of China, 2011). However, the outbreak of African swine fever
disease had made the conservation get into trouble. At the same
time, such severe challenges make us realize that protecting DSE
pigs is an urgent and critical task.

Nowadays, it is convenient to obtain genomic information
based on the high-throughput sequencing techniques; the
researches on DSE pigs are not limited to phenotypic traits
anymore. Exploring the genetic characterization of DSE pigs
could help for preserving genomic variability, advancing
scientific conservation, and contributing to sustainability
(Weitzman, 1993). Population genetic data, such as single-
nucleotide polymorphism (SNP), are often used to demonstrate
population structure and genetic diversity in some other Chinese
indigenous pigs, such as Jiangxi native pigs, Henan native pigs,
Taihu native pigs, and so on (Wang et al., 2018; Qiao et al., 2019;
Zhao et al., 2019). But limited genetic information–associated
literatures were reported about DSE pigs, which reflected that
people know little about genetic characteristics of DSE pigs.
The unique phenotypic characterizations of DSE pigs were
formed through long-term natural and artificial selections so that
the associated selective signatures need to be detected as well,
which might provide clues about the molecular mechanisms of
specific traits. Both the runs of homozygosity (ROH) islands

and integrated haplotype homozygosity score (iHS) methods
have been identified as suitable methods for detecting selection
signatures within a single breed (Chen et al., 2018; Xu et al.,
2019). Therefore, with the aim to promote efficient conservation
and sustainable development of DSE pigs, we describe in
detail the population structure, genetic diversity, inbreeding
coefficients, and selection signatures by using high-density SNPs
within DSE pigs.

MATERIALS AND METHODS

Sample Collection
A total of 75 healthy DSE pigs were selected randomly from
three different regions of Yunnan Province in the present
study. Among them, 27 were obtained from Yingjiang County,
29 were obtained from Jinping County, and the others were
from Sipsongpanna. First, we extracted genomic DNA from
ear tissues following the manufacturer’s instructions using a
commercial kit (LifeFeng Biotech Co., Ltd., Shanghai, China).
Subsequently, these individuals were sequenced and genotyped
using the genome reducing and sequencing (GGRS) protocol.
The experimental procedure for the operation of GGRS was
elucidated in detail by Chen et al. (2013).

Sequencing Data Analysis
The DNA libraries constructed with fragments ranging from
200 to 300 bp were sequenced on the Illumina Hiseq platform.
The quality control of raw fastq files was performed using
the NGS QC Toolkit v2.3.3 with default parameters (Patel and
Jain, 2012). Then, the clean reads were mapped to the pig
reference genome (Sscrofa11.1) through BWA v0.7.5, and the
parameters were set according to Li and Durbin (2009). After
that, SAMTOOLS v0.1.19 was used to call SNPs (Li et al.,
2009), and the missing genotypes were imputed by BEAGLE
v4.1 (Browning and Browning, 2016). The final SNP dataset for
further analysis was obtained following the filtered criteria as
follows: (1) calling quality > Q20, (2) sequencing depth > 5×,
(3) minor allele frequency > 0.05, and (4) eliminate the SNP on
X/Y chromosomes.

Population Structure Analysis
To illustrate the population structure of DSE pigs, the following
methods were performed: (1) the population structure based
on the information from all the SNPs was performed using
ADMIXTURE v1.3.0 (Alexander et al., 2009). The number of
ancestral clusters (K) was set from 2 to 3, and fivefold cross-
validation was run to determine the K value with the lowest
cross-validation error. (2) Principal component analysis (PCA)
was conducted using Plink v1.9 (command –pca 2); the first two
dimensions were used to distinguish population structure. And
the results of structure and PCA were visualized using R package
“barplot” and “ggplot2,” respectively.

Genetic Diversity Analysis
The effective population size (Ne), proportion of polymorphic
markers (PN), observed heterozygosity (HO), expected
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heterozygosity (HE), and allelic richness (Ar) were used
to investigate the genetic diversity of DSE pigs. Ne was
calculated using the equation put forward by Sved (1971):
r2
= 1/(4cNe+ 1), where c expressed in Morgans is the genetic

distance converted from the physical distance between two SNPs
with the simple assumption of 1 cM ∼ 1 Mb (Uimari and Tapio,
2011); linkage disequilibrium value r2 was calculated using Plink
v1.9. PN was the ratio of the number of SNPs in each subgroup
to the total number of SNPs. HO and HE were computed at
the base of the SNP information through Plink v1.9. Ar was
calculated using ADZE v1.0, which had the ability to correct
for unequal sample size (Hurlbert, 1971; Kalinowski, 2004;
Szpiech et al., 2008).

Detection of Runs of Homozygosity
Runs of homozygosity (ROH) were estimated for individuals
using a sliding window approach of 50 SNPs in Plink v1.9 with
command –homozyg (Purcell et al., 2007). The parameters used
to detect ROH were as follows: (i) one heterozygote was allowed
in a window; (ii) two missing calls were allowed in a window;
(iii) the minimum SNP density per ROH was set as 1 SNP per
50 kb; (iv) the minimum number of consecutive SNPs per ROH
was set to 100; and (v) the minimum length for an ROH was set
to 1 Mb. According to the physical length, we classified ROH into
four different categories: > 10, 5–10, 1–5, and > 1 Mb. For each
of the ROH length categories, the number of ROH per subgroup
was calculated by summing all ROH per animal in that category.
Besides, the frequency of ROH numbers and the total length of
ROH were computed as well.

Inbreeding Coefficient
The inbreeding coefficient based on ROH (FROH) was calculated
for individuals using the formula below (McQuillan et al., 2008):

FRON = LROH
LAUTO , where LROH is the length of autosomes

covered by ROHs, and LAUTO is the length of autosomes covered
by SNPs, which was 2.26 Gb in our study. Thompson (2013)
had reported that the physical length of an ROH (Mb) = 100/2
g cM, where g represents the number of generations of interest.
Four ROH length categories were determined so that the
analysis of inbreeding coefficients based on ROH length would
provide information on the inbreeding during four different time
spans (FROH>10Mb, FROH5−10Mb, FROH1−5Mb, and FROH>1Mb),
corresponding to five generations ago, 5–10 generations ago,
10–50 generations ago, and 50 generations ago, respectively.

Detection of ROH Island
To identify the genomic regions most associated with ROH, we
calculated the percentage of the occurrence of SNPs in ROH by
counting the number of times an SNP was detected in an ROH
across individuals. The top 0.5% of SNPs showing the percentage
higher than 20% were selected, and the adjacent SNPs were
merged into genomic regions corresponding to ROH islands for
subsequent analyses (Pemberton et al., 2012). The percentage of
SNPs residing within an ROH was visualized using R package
“ggplot2.” The genes within each ROH island were further
extracted using R package “biomaRT” (Durinck et al., 2005).

Selection Signature
The selection signatures in genomes within DSE pigs were
detected using iHS statistic, which is powerful to identify putative
regions of recent or ongoing positive selection genomes (Voight
et al., 2006). The haplotype data files were derived from the
phasing program fastPHASE v1.4.0 with the default parameters
(Scheet and Stephens, 2006). Then, the iHS scores were computed
for each autosomal SNP using the R package “rehh v3.1” (Gautier
et al., 2017). The iHS statistic measures the amount of extended
haplotype homozygosity for a given SNP along the ancestral
allele relative to the derived allele. In this study, the ancestral
alleles required for the computation of iHS were inferred as
the most common alleles in the entire dataset as described by
Bahbahani et al. (2015) and Bertolini et al. (2018). To calculate
the p-value at the genomic level, iHS scores for each SNP
were further transformed as piHS = − log10(28(−|iHS|)), where
8(x) represents the Gaussian cumulative distribution function,
and piHS is a two-sided p-value (on a − log10 scale) of a test
on the null hypothesis of no selection (Gautier and Naves,
2011). Considering that the threshold was q = 0.05, the piHS
scores higher than 4.24 (q < 0.05) were considered as putative
signatures of selection.

Functional Annotation
Common SNPs between the ROH island and iHS methods were
regarded as candidate selection signatures. The Ensembl Genes
89 (Sscrofa11.1) database was used to retrieve the candidate
genes that were associated with selective signatures through
Ensembl Variant Effect Predictor test1. To further analyze the
function of these candidate genes, Gene Ontology (GO) and
Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway
enrichment analysis were performed using KOBAS 3.02. The
GO terms and KEGG pathways with q < 0.05 were regarded
as significant results. Moreover, the pig quantitative trait locus
(QTL) database3 was used to confirm the most plausible trait-
associated selective signatures. The threshold length of the QTL
regions was set to 1 Mb for accuracy.

RESULTS

The sequencing data revealed more than 380 million raw reads
generated in this study, in which more than 320 million were

1http://www.ensembl.org/info/docs/tools/vep/index.html
2http://kobas.cbi.pku.edu.cn/anno_iden.php
3https://www.animalgenome.org/cgi-bin/QTLdb/SS/index

TABLE 1 | The information of sequencing data.

Subgroups No. Raw reads Clean reads Average
coverage

Average
depth

Yingjiang 27 164,926,919 128,935,797 3.47% 6.67 ×

Jinping 29 163,182,786 142,451,137 3.81% 6.73 ×

Sipsongpanna 19 58,244,244 54,859,021 3.14% 4.86 ×

Total 75 386,353,949 326,235,955
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FIGURE 1 | (A) Shows admixture plot comprising ancestry numbers (K) at 2 and 3 of all the individuals; (B) shows principal components analysis of all individuals,
and the x-axis denotes the first principal component, whereas y-axis represents the second principal component.

clean reads. On average, approximately 4.35 million clean reads
of each animal were detected. The average sequencing coverage
and sequencing depth of the entire genome were 3.47% and
6.09×, respectively (Table 1). After quality control and filtering
of unqualified SNPs, a total of 443,703 SNPs were obtained.
When these SNPs were annotated to the Sscrofa11.1 genome in
the Ensembl Gene database, we found that 80,307 SNPs were
novel. Generally, these SNPs were distributed uniformly across
the genome (except Chr Y), which can represent the information
of the whole genome (Supplementary Figure S1). We discarded
the SNPs on sex chromosomes, and the subsequent statistical
analyses were performed using 438,038 autosomal SNPs.

An overview of the relationships among these pigs from
different regions, which belong to DSE pig breed, is presented
in Figure 1. When K = 2, the DSE pigs from Yingjiang
were obviously distinguished from those from Jinping and
Sipsongpanna. When K = 3, the DSE pigs from different regions
were separated clearly (Figure 1A). The estimated K for the
admixture analysis with the lowest cross-validation error was 2.
According to the results of PCA analysis, PC1 accounted for 8.0%
of the total variance, whereas PC2 accounted for 5.3% of the total
variance. The first two dimensions divided these individuals into
three different clades, which were identical to the geographical
information of the DSE pigs (Figure 1B).

The results of genetic diversity in the three subgroups of
DSE pigs are shown in Table 2. The results showed that the
DSE pigs had low Ne and heterozygosity values. By comparison,
we found that the Ne and PN values of Yingjiang are higher
than those of Jinping and Sipsongpanna, but Jinping has the
highest heterozygosity ratio and Ar value among three subgroups.
Overall, the value of HE was always greater than the value of HO
in each subgroup. In addition, Sipsongpanna has the least values
of each parameter of genetic diversity all the time when compared
with other two subgroups, which means that the Sipsongpanna
subgroup owns the lowest genetic diversity levels.

TABLE 2 | Genetic diversity of DSE pigs.

Subgroups No. Nsnp Indices of genetic diversity

Ne PN HO HE Ar

Yingjiang 27 433,160 46 0.988 0.219 0.289 1.873

Jinping 29 410,454 42 0.936 0.247 0.295 1.890

Sipsongpanna 19 387,882 39 0.885 0.202 0.284 1.799

All DSE pigs 75 438,308

No., number of individuals; Nsnp, number of SNPs; Ne, effective population size;
PN, the proportion of polymorphic markers; HO, observed heterozygosity; HE,
expected heterozygosity; Ar, allelic richness.

The physical length category of ROH and the average
inbreeding coefficients estimated based on the length of ROH are
shown in Table 3. The distribution of ROH according to length
is shown in Figure 2. A total of 1,122, 1,244, and 720 ROHs were
retained from Yingjiang, Jinping, and Sipsongpanna, respectively.
The length of ROH mainly fell within 1–5 Mb, and the number
of ROH within 1–5 Mb accounted for more than 88% of the total
number of ROH in each subgroup. In contrast, the percentages
of the larger ROH (>10 Mb) were no more than 3%, especially in
Sipsongpanna, which were only 0.69%. Although the percentages
of larger ROH are low, they still covered a considerable portion
of the total ROH length. In addition, the FROH based on larger
segments expressed lower values than that based on smaller
segments. In general, the FROH based on different ROH length
category between Yingjiang and Jinping were always similar.
Compared with others, Sipsongpanna expressed the lowest
inbreeding levels.

The percentage of SNPs residing in the ROH regions across
different individuals is shown in Figure 3. More than 85% of
SNPs occurred with ROH of at least one individual, and the
largest percentage of SNP detected in the ROH was 45.33%. In
addition, we found that the frequency of different SNPs occurring
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within ROH regions was not uniform across the genome. To
identify the ROH islands, we selected the top 0.5% of SNPs with
a minimum percentage of 20%. A total of 19 ROH islands were
obtained and are listed in Supplementary Table S1. The lengths
of these ROH islands were distinct, ranging from 150 kb on
SSC11 to 8.37 Mb on SSC1. There were more ROH islands located
on SSC1 than on other autosomes. Moreover, a total of 449
genes inside these ROH islands were annotated and are provided
in Supplementary Table S1. There was no correlation between
the length of ROH islands and the number of genes within the
ROH islands. For example, the ROH island on SSC3: 39193050–
41594976 was not the longest but contained the most annotated
genes. However, the ROH island on SSC11: 51567712–51718380,
no gene was annotated, although it was longer than 150 kb.

The iHS method has strong potential to explore selective
signatures within the DSE pig population. The average |iHS| value
across the genome was 0.77, but the maximum |iHS| value was
7.16, which indicated that the distribution of selective signatures
across the genome was non-uniform. A total of 501 significant
SNPs based on |iHS| scores were detected with a q < 0.05,
and the first two most significant outliers were both located
in a novel gene ENSSSCG00000038892 on SSC7 (Figure 4).
Of these, 70 significant SNPs were also detected in the ROH
islands. As candidate selective signatures, Supplementary Table
S2 lists the chromosome position, the percentage of SNPs in
ROHs, and |iHS| value of each SNP. Finally, 20 candidate genes
were identified by annotating these 70 common SNPs to the
pig genome, including NANS, GABBR2, PACSIN1, and so on
(Supplementary Table S2). Furthermore, these 20 annotated
genes were used for the GO, KEGG, and QTL annotation
analyses to explore related biofunctions. The most enriched
pathway was “taste transduction,” which provoked our interest
(Supplementary Table S3).

DISCUSSION

Diannan small-ear pig, one of the Chinese indigenous pigs,
has excellent characteristics such as good meat quality, high
intramuscular fat content, and high resistance. However, the
population sizes of DSE pigs were decreased within years
because of the increased introduction of Western pigs and
inappropriate management. And the researches focused on
the genetic information of DSE pigs were limited, which
was disadvantageous to scientific conservation and commercial
development for DSE pigs. Nowadays, it is difficult to obtain
a large-scale population with pure DSE pigs. In our study, we
randomly selected 75 DSE pigs from three different regions,
and the genetic characterization of DSE pigs was analyzed
using SNP information. Both the population admixture and
PCA analysis implied a distinct difference among the DSE
pigs from different regions. Interestingly, the distribution of
DSE pigs reflected in the PCA was corresponding to their
geographical origins. Such phenomenon revealed that the genetic
differentiation occurred within DSE pigs in the past because of
the geographic isolation. And similar discovery was also made
in another study of Chinese indigenous pig breeds (Wang et al.,
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2018). Besides, compared with Jinping and Sipsongpanna, the
distribution of Yingjiang was more scattered, which reflected
the larger genetic differences among individuals in Yingjiang.
According to structure analysis, K = 2 owned the lowest cross-
validation error. When K = 2, Yingjiang was separated from
Jinping and Sipsongpanna distinguishingly, which indicated that
the level of genetic differentiation of Yingjiang was higher than
that of Jinping and Sipsongpanna. Because DSE pig is a precious
genetic resource, the most important for us is to strengthen
conservation for DSE pigs rather than promote differentiation
within DSE pigs. In consideration of these results, we need to
further strengthen genetic connection among DSE pigs from
different regions to avoid population genetic differentiation and
promote genetic conservation for DSE pigs.

Studying genetic diversity is essential for specific population
conservations, and different genetic diversity indicators display
different sensitivities. Effective population size (Ne) is one of the
most important concepts introduced into population genetics
and plays a central part in animal breeding and conservation
biology. Simon (1999) had reported that if the Ne is lower than 65,
those pig breeds could be classified as being at risk. Based on the
low Ne estimated in our study, the DSE pig may be in danger of
extinction, and as a valuable Chinese indigenous breed, it should
be included in special conservation programs for sustainable
development. Heterozygosity within a population is another
important index of genetic diversity. High heterozygosity means
rich genetic variability, whereas low heterozygosity means poor
genetic variability. Usually, we tend to attribute the discrepancy to
inbreeding when HE is greater than HO. And the heterozygosity
values reported in DSE pigs are considerably lower than those
reported previously for other Chinese pig breeds (Fan et al., 2002;
Luetkemeier et al., 2010). Besides, the analysis of the distribution
of alleles across populations is important for elucidating genetic
diversity as well. Ar provides complementary information to
gene diversity. The results presented in this study reflected
that DSE pigs had less Ar compared with Taihu pigs (Zhao
et al., 2019). In general, DSE pigs expressed the lower genetic
diversity than that of some other Chinese indigenous pigs, which
prompted us to be conscious of the importance of accelerating
scientific conservation of DSE pigs. Therefore, we surmise
whether it is more feasible to combine all the subgroups for
DSE pig conservation rather than separate one breed into several
subgroups. Of course, strengthening effective cooperation across
different regional farms is required.

Another aspect of interest while doing research on population
conservation is to study the level of inbreeding. Traditional
estimation of the inbreeding coefficient is based on pedigree
data. Previous studies have elucidated that using genomic data
to evaluate the extent of inbreeding was more accurate than
using pedigree data (Purfield et al., 2012; Zanella et al., 2016)
because the pedigree data were always incomplete and failed to
capture the influence of relatedness among individuals in the
population. The level of ROH reflects the ancient and recent
inbreeding history of a population, which has been widely applied
to explore the extent of inbreeding in the population of any
species (Deniskova et al., 2019; Xu et al., 2019; Bhati et al., 2020).
As shown in previous report, the average ROH levels varied

considerably among Chinese pigs, ranging from the lowest value
of 20.6 Mb in wild boars to the largest value of 168 Mb in DSE
pigs (Wang et al., 2018). In our results, the average ROH length
ranged from the 86.5 Mb in Sipsongpanna to 118.1 Mb in Jinping.
We found that the sum of ROH length per DSE pig is always
larger than that of other Chinese pigs exactly, which indicated
that DSE pigs might be influenced by inbreeding in recent or
ancient years. Regardless of pigs or sheep, the numbers of shorter
ROH were dominant all the time (Purfield et al., 2017; Xu et al.,
2019). What’ more, the sum of ROHs in Sipsongpanna was less
than that of other subgroups; the reason might be that the sample
size of Sipsongpanna was only 19. Then, FROH based on different
ROH length categories was calculated, respectively. Compared
with Taihu pigs, the FROH1−5Mb values of DSE pigs were almost
consistent with the inbreeding coefficients of small Meishan pigs
and Shawutou pigs (Zhao et al., 2019). And FROH>5Mb was
lower than FROH<5Mb in each DSE pig subgroup. These results
revealed that the ancient (up to 50 generations ago) inbreeding
had greater impacts than recent (within the last five generations)
inbreeding on the genome within DSE pig population. The reason
for this phenomenon might be that the inbreeding was inhibited
effectively within DSE pig population under artificial selection
in recent years.

As mentioned above, the most frequent SNP that occurred
in ROH was 45.33%,and approximately only 85% of SNPs
detected in an ROH of at least one individual. However, in
202 Jinhua pigs, the highest occurrence of SNP was 64.9%,
and 27% of the SNPs comprised ROH in at least 20%
of individuals (Xu et al., 2019). Besides, in 674 Chinese
indigenous pigs, the highest percentage was 56.97% observed
for an SNP within ROHs (Zhang et al., 2018). We realized
that the occurrences of SNPs within the ROHs in this
study were lower than the results from other researches.
The reason for this difference might be due to either the
fewer samples in our study or greater variation in the
DSE pig population.

To improve the accuracy of the ROH islands detected in
this study, we checked whether these ROH islands overlapped
with the putative trait-associated genomic regions obtained in
other studies. In our study, the ROH island on SSC7 partially
overlapped with a selection region in a study of multiple Chinese
native pig breeds, which spanned HMGA1 and PPARD genes
(Zhang et al., 2018). HMGA1 and PPARD have been recognized
as candidate genes that control limb bone length by regulating
bone development (Zhang et al., 2014; Le et al., 2017). The
genes VASN, SEC14L5, and PRSS33 within different ROH islands
on SSC3 (37149610–39173394, 39193050–41594976), involved
in body size and lipid transport and metabolism, were also
detected in the selection signature regions in Enshi black pigs (Fu
et al., 2016). PACSIN1 was also detected as a selective signature
for body weight within Meishan pigs (Sun et al., 2018). In
addition, there were some overlapping regions between ROH
islands and QTL regions, which were associated with meat
quality, growth, and immunity traits. For instance, positions
247,188,770 to 247,470,022 bp on SSC1 (ID = 8418) are a
significant QTL region associated with drip loss (Ponsuksili
et al., 2008). In conclusion, the ROHs across the genome in the
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FIGURE 2 | Relationship between the number of ROHs and the length of each ROH. The x-axis denotes the physical distance of ROHs (Mb), and the y-axis
represents the number of ROHs.

FIGURE 3 | The occurrences (%) of an SNP in ROHs within DSE population. The dashed line indicates the top 0.5% threshold, which defines ROH islands.

DSE pig population are related to important economic traits
under selection.

Integrated haplotype homozygosity score statistic is powerful
to detect selection signatures within a single population and has
been widely applied to many species (Fleming et al., 2017; Chen
et al., 2018; Alshawi et al., 2019). In our study, a total of 70

SNPs were obtained through ROH islands and iHS methods.
Twenty potential genes were annotated according to these SNPs,
and those specific trait-associated genes that we showed were
paid more attention to. For example, there was a study that
showed the loss of COL15A1 provoked muscle atrophy (Guillon
et al., 2016). Another study showed that overexpression of
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FIGURE 4 | Manhattan plot of iHS test. The x-axis denotes the chromosome position, and the y-axis represents the associated p-value of each |iHS| score. The
upper dashed line represents the threshold with q < 0.01, and the lower dashed line represents the threshold with q < 0.05.

RPL3L impaired the growth and myogenic fusion of myotubes
(Chaillou, 2019). Jiugang et al. (2011) found that SLC9A3R2
was differentially expressed in longissimus muscle tissues from
Meishan and Large White pigs. It is well known that DSE pigs
have a better taste than Western commercial pigs, which may
reflect the different patterns of muscle development. Thus, we
considered COL15A1, RPL3L, and SLC9A3R2 to be the candidate
genes for meat quality. In addition, PALM2-AKAP2 was a
potential locus associated with height according to the previous
GWAS for the Korean population (Kim et al., 2010). Both
biallelic deleterious mutations in NANS and de novo missense
variants in TRAF7 have been reported to be associated with
developmental delay or severe skeletal dysplasia (van Karnebeek
et al., 2016; Tokita et al., 2018). PACSIN1 was also detected
as a causal gene for body weight in Meishan pigs (Sun et al.,
2018). Meanwhile, the PACSIN1 gene was also located in the
body length–associated QTL region. These results suggest that
PALM2-AKAP2, NANS, TRAF7, and PACSIN1 might be plausible
genes for body size of DSE pigs. There were also some studies
that identified CLDN9 played important roles for maintaining
barrier function in airway epithelial cells and promoting lung
cancer metastasis (Sharma et al., 2016; Gon et al., 2017).
E4F1 is essential for skin homeostasis because E4F1 knockout
mice suffer from skin homeostasis defects, followed by loss of
cellularity in the epidermis and severe skin ulcerations (Lacroix
et al., 2010). Moreover, both the selection regions associated
with the CLDN9 and E4F1 genes were also located within
the immune QTLs. As we know, the habitat of DSE pigs is
in a subtropical region with high temperature and humidity.

Therefore, we considered that CLDN9 and E4F1 might be
the key factors for environmental adaptability of DSE pigs.
Another detected gene was GRM4, which was demonstrated
to be related to neuronal signal transduction and affects feed
intake (Hou et al., 2018). According to the QTL analysis,
GRM4 was associated with average daily gain. Furthermore, the
pathways “taste transduction” and “neuroactive ligand–receptor
interaction” were the most enriched pathways in KEGG analysis.
Thus, GRM4 is regarded as a causal gene that could influence the
appetite of DSE pigs.

We were aware that the sample size in our study was small for
reliable estimation. Nevertheless, the sample sizes of populations
in the present study were comparable to those in similar studies,
which were appropriate for analyses on population structure,
genetic diversity, inbreeding coefficients, and selection signatures
(Ai et al., 2013; Lukić et al., 2020). Future work on a larger
sample size should estimate these parameters again because
they are important for conservation assessment and sustainable
development of DSE pigs.

In summary, we detected that the genetic differentiation
occurred within DSE pigs because of geographical isolation
according to population structure and PCA analysis. Diannan
small-ear pigs expressed low genetic diversity, which encouraged
the breeding farms to take more intensive conservation measures
for DSE pig conservation. At last, some candidate genes that
may underlie differences in adaptation to specific environments
and productive systems were identified in potentially selected
regions. This study focused on the genetic diversity and selection
signature of DSE pigs. Our findings may contribute to the
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strength of the conservation and sustainable development of
DSE pigs and promote the understanding of the formation
mechanisms of specific traits of DSE pigs.
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