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evolutionally conserved in zebrafish and human

Ribosomes are large RNA and protein complexes that function as
the machinery for translation protein synthesis (Boisvert et al.,
2007; Ben-Shem et al., 2011; Henras et al., 2015; Khatter et al.,
2015; McCann et al., 2015). The eukaryotic ribosome is composed
of two subunits, the 60S large subunit (LSU) and the 40S small sub-
unit (SSU), which collectively comprise of four different ribosomal
RNA (rRNA) species and more than 70 proteins (Ben-Shem et al.,
2011; Henras et al., 2015; Khatter et al., 2015). The LSU contains
the 28S, 5.8S and 5S rRNAs and the SSU contains the 18S rRNA.
The assembly of each subunit is initiated in the nucleolus using
the respective rRNAs as backbones (Ben-Shem et al., 2011; Henras
et al.,, 2015; Khatter et al., 2015). The 28S, 18S and 5.8S rRNAs are
encoded by the polycistronic 47S pre-rRNA gene, and are tran-
scribed as a single transcript. In humans, the rDNA loci are orga-
nized in the nucleolar organizer regions (NORs), which each
contains 300—400 identical repeats of the 47S pre-rRNA gene.
The 47S pre-rRNA transcripts undergo sequential endonuclease
and exonuclease cleavages to remove the internal transcribed
spacer (ITS) and external transcribed spacer (ETS) at site A2
(Fig. S1) (Henras et al., 2015; Yoshikawa et al., 2015), resulting in
the mature 28S, 18S and 5.8S rRNAs (Mullineux and Lafontaine,
2012; Wang et al.,, 2014). In yeast, Rcllp, a novel type of endonu-
clease, plays key roles in cleaving pre-rRNAs at the A2 site (Billy
et al., 2000; Horn et al.,, 2011). Rcllp loading onto pre-rRNAs re-
quires Bms1p, an interacting protein identified in a yeast two-
hybrid screen using Rcl1p as the bait (Wegierski et al., 2001). Sub-
sequently, Bms1 was demonstrated to be a GTPase (Karbstein et al.,
2005) that positions the endonucleolytic activity center of Rcll
around A2 when the Bms1-Rcl1 complex is loaded onto the pre-
rRNA (Delprato et al., 2014). Thus far, most of the functional studies
on Rcl1 and Bms1 have mainly been performed in yeast (Horn et al.,
2011; Tanaka et al., 2011), with a few exceptions (Wang et al., 2012,
2014; Marneros, 2013). Noting the importance of the Bms1-Rcl1
complex in pre-rRNA processing in yeast, we examined the rela-
tionship between Bms1 and Rcl1 in multicellular vertebrate organ-
isms, specifically on zebrafish and humans. Our results showed that
Bms1 and Rcl1 interaction is evolutionarily conserved from yeast to
these vertebrate species.

We previously reported that Bms1 is a highly conserved protein
in humans, mice, zebrafish and yeast (Wang et al., 2012). Based on
sequence information from GeneBank (Accession number:
NP_001003865.1 for zebrafish rcll, 649105902 for human RCL1
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and 40788900 for human BMS1), we designed specific primers
and cloned full-length zebrafish rcll, human RCL1 and human
BMS1 cDNAs, using RT-PCR approach. Alignment of Rcll deduced
protein sequences from human, zebrafish and yeast showed that
zebrafish Rcl1 shares 76% and 37% identity with human and yeast
Rcl1, respectively (Fig. S2). Domain analysis showed that all Rcl1
orthologs in yeast, zebrafish and humans contain an RNA 3’-termi-
nal phosphate cyclase (RTC) domain and an RTC_insert domain
(Fig. S3). Notably, the vertebrate Rcl1 proteins (zebrafish and hu-
man) contain a putative bipartite nuclear localization signal profile
(NLS_BP) between the RTC and RTC_insert domains that is absent
in the yeast counterpart (Fig. S3).

To determine the subcellular localization of zebrafish Bms1 and
Rcl1, we generated various polyclonal antibodies against zebrafish
Bms1l (rabbit and mouse) and Rcll (rabbit), respectively. Co-
immunofluorescence revealed that the Bms1l signals were co-
localized with those of Fibrillarin (Fib), a nucleolar marker for the
region of dense fibrillar component (DFC), in the nucleoli of the in-
testinal epithelial cells of 5 dpf (day post-fertilization) zebrafish
embryos (Fig. 1A). Interestingly, the Bms11 signals appeared to be
distributed over a broader area than that covered by Fib (Fig. 1A).
Co-immunofluorescence of Bms1l and Rcll showed that these
two proteins were co-localized in the nucleoli of both intestinal
epithelial cells (Fig. 1B) and hepatocytes (Fig. 1C) of 5 dpf zebrafish
embryos. As observed in Bms1l and Fib co-immunofluorescence
(Fig. 1A), the Bms1l1 signals had a wider distribution than those of
Rcll (Fig. 1B and C). In the adult zebrafish liver, Bms1l also co-
localized with Fib in hepatocyte nucleoli (Fig. 1D). These data sug-
gest that the localized expression pattern of Bms1l in the nucleolus
correlates well with the functional needs of ribosomal activity in a
cell. The consistent observation of the larger area coverage of the
Bms1l signals compared to that of Rcl1 in the embryos might sug-
gest additional, yet to be identified, functions for Bms1l, additional
to its role in pre-rRNA processing during early development.

Using commercially available antibodies against human BMS1
(HuBMS1) and human RCL1 (HuRCL1), co-immunofluorescence of
HuBMS1 and Fib or HuRCL1 and Fib in human HepG2 cells showed
that both HuBMS1 and HuRCL1 were localized in the nucleolus
(Fig. 1E), suggesting that both Bms1 and Rcl1 are conserved nucle-
olar proteins in eukaryotes. Importantly, similar to previous reports
of bmsil-morpholino injected zebrafish embryos (Wang et al,
2012), blocking Rcl1 function via a splicing morpholino targeting
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Fig. 1. Bms1 and Rcl1 interaction is conserved in zebrafish and humans. A—D: Co-immunofluorescence of Fibrillarin (green) and Bms1I (red) (A, D) or Bms1l (green) and Rcl1 (red)
(B, €) in 5 dpf WT zebrafish gut epithelial cells (A, B), hepatocytes (C), and adult zebrafish liver (D). DAPI (blue) is used to stain the nuclei. E: Co-immunofluorescence (Co-IP) of
Fibrillarin (Fib) and HuBMS1 (upper panels) or Fib and HuRCL1 (lower panels) in cultured human HepG2 cells. F: Co-IP analysis. Western blot of HA-HuBMS1 (by the anti-HA anti-
body) and HURCL1-Myc (by the anti-Myc antibody) in protein samples eluted from agarose beads conjugated with HA antibodies. The 293T cells were transfected with the plasmids
as indicated for 60 h. Co-IP was performed using agarose beads conjugated with HA antibodies (Ab HC: antibody heavy chain). G: Co-IP analysis. Western blot of Bms1l (Bms11-WT)
and Bms11°9'%3 (Bms11-163) using anti-Bms11 antibodies (rabbit origin), and Rcl1-Myc using anti-Myc antibodies in protein samples eluted from beads captured with Bsm1l anti-
bodies (mouse origin). The 293T cells were transfected with the plasmids as indicated for 60 h. H: Co-IP analysis. Western blot of endogenous Bms1l using an anti-Bms11 antibody
(mouse origin) and endogenous Rcl1 using an anti-Rcl1 antibody. Total protein extracts from adult zebrafish livers were used in the Co-IP using protein A + G beads conjugated with
Bsm1l antibody (rabbit origin). I: Western blot of Bms1l and Bms11°9'6% in the WT siblings and bms1F9'53 homozygotes at 5 dpf obtained from the progenies of bms1P'%%
+ x bms1I°9%63/+ NS., non-specific band. B-actin is used as a loading control. J: Co-immunofluorescence of Rcll (red) and Bms11°'3 (green) in the liver of bms1/*9’®> mutant
(sq163 MU) of 5 dpf zebrafish embryos.

the junction between intron 3 and exon 4 of rcll (Rcl1-MOspl) To determine whether human or zebrafish Bms1 and Rcl1 form
resulted in aberrant pre-rRNA processing in zebrafish embryos a complex as in yeast, we transfected 293T cells with a pCS2"-HA-
(Fig. S4). These results suggest an evolutionary conservation of BMS1 or pCS2*-RCL1-Myc plasmid alone or with a mix of pCS2*-
these two proteins in ribosome biogenesis in eukaryotes. HA-BMS1 and pCS2*-RCL1-Myc plasmids to express HA-tagged (at
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the N-terminal) HuBMS1 (HA-HuBMS1) and Myc-tagged (at the C-
terminal) HuRCL1 (HuRCL1-Myc), and performed co-
immunoprecipitation assays with total protein lysates extracted
60 (hpt) hours post transfection. Our results showed that HuBMS1
and HuRCL1 formed a complex (Fig. 1F). Similar analysis with Myc-
tagged (at the C-terminal) zebrafish Rcl1 (Rcl1-Myc) or zebrafish
Bms1] without a tag (Bms11-WT) alone or together in 293T cells
showed that zebrafish Bms1l could interact with Rcl1 (Fig. 1G) in
human cells. To determine whether the two proteins could interact
with each other endogenously, we extracted total protein from
adult zebrafish liver and analyzed similarly with Co-IP assay. West-
ern blot analysis revealed that the endogenous Rcll was co-
immunoprecipitated with Bms11 (Fig. 1H), thereby confirming con-
servation of the interactions between Bms1 and Rcl1 across species.

We previously reported that the bms1*9'% mutation is caused
by a T to A substitution converting the amino acid L2 to Q'*? in
the GTPase domain of the protein (Wang et al., 2012). A western
blot analysis of total protein extracted from 5 dpf wild type (WT)
siblings and bms1*9'%3 homozygous mutant embryos showed that
the Bms11°9®3 mutant protein remained expressed, albeit at a
lower level than in the WT siblings (Fig. 1I). Co-
immunofluorescence of Bms11°9'®3 and Rcll revealed that the
Bms1159'®3 mutant protein could co-localize with Rcll in the
nucleoli of the hepatocytes at 5 dpf (Fig. 1]). Furthermore, Rcl1-
Myc was co-immunoprecipitated with the Bms11°963 mutant pro-
tein when they were co-expressed in 293T cells (Fig. 1G), suggesting
that although the L2 residue is essential for the biological function
of Bmsl1], the substitution mutation does not affect its interaction
with Rcll. This finding is consistent with structural analysis of the
yeast Rcl1-Bms1 complex in which the GTPase domain has been
shown to be dispensable for Rcl1 and Bms1 interaction but essen-
tial for Rcl1 accession to the A2 site (Delprato et al., 2014). Taken
together, our data show that the interaction between Bms1 and
Rcl1, two SSU biogenesis factors, is evolutionarily conserved in eu-
karyotes. The L'>2 to Q'3 in the Bms1 GTPase domain in bms1/4763
does not affect the Rcl1-Bms1 interaction but is essential for the
biological function of the complex.
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