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Abstract

Background: Alfalfa hay and corn stover are different type of forages which can significantly impact a cow’s
lactation performance, but the underlying metabolic mechanism has been poorly studied. We used biomarker
and pathway analyses to characterize related biomarkers and pathways based on urine metabolomics data from
different forage treatments. Urine was collected from 16 multiparous Holstein dairy cows fed alfalfa hay (AH, high-quality
forage, n = 8) and corn stover (CS, low-quality forage, n = 8) respectively. Gas chromatography–time of flight/mass
spectrometry (GC-TOF/MS) was performed to identify metabolites in urine and the metaboanalyst online platform was
used to do biomarker and pathway analysis.

Results: Hippuric acid (HUA) and N-methyl-glutamic (NML-Glu) indicated the most significant difference between the
two diets, when statistically validated by biomarker analysis. HUA was also validated by standard compound quantitative
method and showed significant higher concentration in CS group than AH group (2.8282 vs. 0.0005 mg/mL; P < 0.01).
The significant negative correlation between milk yield and HUA (R2 = 0.459; P < 0.01) and significant positive correlation
between milk yield and NML-Glu (R2 = 0.652; P < 0.01) were characterized. The pathway analysis revealed that these
different metabolites were involved in 17 pathways including 7 influential pathways (pathway impact value > 0): Tyr
metabolism, starch and sucrose metabolism, amino sugar and nucleotide sugar metabolism, galactose metabolism,
Phe, Tyr and Try biosynthesis, purine metabolism, and glycerolipid metabolism. Based on the metabolome view map,
the Phe, Tyr and Try biosynthesis pathway exhibited the highest impact value (0.50), and the Holm-Bonferroni multiple
testing-based analysis revealed the most significant difference in the Tyr metabolism pathway (Holm P = 0.048).

Conclusions: The identified HUA and NML-Glu may serve as potential biomarkers for discriminating CS and AH diets and
could be used as candidates for milk yield related mechanistic investigations. Integrated network pathways associated
with related metabolites provide a helpful perspective for discovering the effectiveness of forage quality in lactation
performance and provides novel insights into developing strategies for better utilization of CS and other low-quality
forage in China.
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Background
Forage quality greatly affects dairy cow performance
[1, 2]. Using traditional nutritional methods, it is difficult
to discern metabolic alterations and characterize alter-
ations in key metabolic pathways when dairy cows are fed
diets differing in forage quality. Metabolomics is an effect-
ive means to explain the overall complex and essential

changes in diverse biological systems and may be the sole
technology that can detect these changes [3]. This is fur-
ther improved by combining nuclear magnetic resonance
or mass spectra (MS) based high-throughput identifica-
tion methods and multivariate statistical analyses [4]. The
metabolomics approach is a useful tool for elucidating the
effects of diet on biofluid metabolite profiles in dietary
intervention studies on dairy cows [5].
In previous work, we characterized certain results for

common metabolites in four biofluids (rumen fluid,
milk, serum, and urine) [6]. We concluded that a deep
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analysis of metabolites from a single representative bio-
fluid should be used to generate specific biomarkers and
pathways to distinguish the metabolic profiles of dairy
cows fed different diets. Urine metabolites result from
global metabolism within the body and are easily af-
fected by physiological, dietary and environmental inter-
ventions. As an easily collected and stored biofluid,
urine has been widely used in human metabolomics to
diagnose disease and serve as an early warning in pre-
clinical stages [7]. Urine metabolomics may be used to
capture most of the small molecular compounds in urine
and identify those that significantly differ to further
characterize metabolic pathways that may differ among
different dietary treatments [8]. This will provide insight
into identifying biomarkers and understanding the
physiological processes associated with performance dif-
ferences [9].
In the current study, biomarker and related pathway

analysis was performed using the aforementioned urine
metabolomics raw data under different forage treatments
to evaluate the effects of forage quality on dairy cow me-
tabolism. This approach can discern valid biomarkers
and pathways and to understand the mechanism under-
lying forage-related nutrition in dairy cows.

Methods
Experimental design
The experimental procedures were approved by the
Animal Care Committee at the Zhejiang University
(Hangzhou, China) and were in accordance with the uni-
versity’s guidelines for animal research.
Sixteen multiparous (3.6 ± 1.8 parity) Holstein cows

were randomly assigned to 2 groups according to BW
and milk yield as described by Sun et al. [6]. Both groups
were offered consisting of 55 % concentrate mixture and
15 % corn silage with different forages (Additional file 1:
Table S1): (1) alfalfa (AH), containing 23 % alfalfa hay
and 7 % Chinese wild rye hay, and (2) corn stover (CS),
containing 30 % corn stover instead of alfalfa hay and
Chinese wild rye hay. The diet was formulated to meet
or exceed the net energy requirement for cows with milk
production at 30 kg/d [10]. Feed was offered ad libitum
to allow for at least 5 to 10 % orts. The experiment
lasted for 65 d long with the first 15 d were used for
adaption. Cows were housed in a tie-stall barn with free
access to drinking water and were fed and milked 3
times daily at 0630, 1330 and 1930 h.

Sample collection and metabolite measurement
At the end of the experiment, urine samples (15 mL)
were collected using vulval stimulation between 0500
and 0630 h. Each sample was immediately frozen in a
liquid nitrogen container to minimize metabolite deg-
radation. After thawing and centrifugation at 6,000 × g at

4 °C for 15 min, samples were stored in 1.5 mL centri-
fuge tubes at −80 °C for further analyses. The methods
and procedures for identifying specific metabolomics, in-
cluding metabolite extraction, derivatization, GC-TOF/
MS identification and data pretreatment, are described
elsewhere [6]. L-2-chlorophenylalanine was used as a in-
ternal standard and bistrifluoroacetamide (containing
1 % TCMS, v/v) as a derivated reagent. Agilent 7890 GC
system equipped with a Pegasus 4D TOFMS (LECO, St.
Joseph, MI, USA) was installed with a DB-5MS capillary
column (0.25 μm film thickness, 30 m × 250 μm inner
diameter). Helium served as the carrier gas and a front
inlet purge flow of 3 mL/min was utilized. Temperature
procedure was as follows: the initial temperature was
kept at 80 °C for 0.2 min, increased to 180 °C at a rate
of 10 °C/min, to 240 °C at a rate of 5 °C/min, and further
to 290 °C at a rate of 20 °C/min; the column was then
maintained for 11 min. The injection, transfer line, and
ion source temperatures were 280, 245, and 220 °C, re-
spectively. The MS data were acquired at a rate of 100
spectra/s after a solvent delay of 492 s with a mass-to-
charge ratio (m/z) range of 20 to 600 in full-scan mode.

Hierarchical cluster analysis
In a previous study [6], 31 significantly different metabo-
lites were identified in the urine. The relative concentra-
tion of these significantly different metabolites was
incorporated into an online analysis platform (Metaboa-
nalyst 3.0, http://www.metaboanalyst.ca/) for a hierarch-
ical cluster analysis (HCA), which is a widely used data
summary analysis tool to merge similar groups of points
into visualization tree. Each sample began as a separate
cluster, and the algorithm combined the samples until
each sample belonged to one cluster. The HCA with
Euclidean distance similarity measures and an average
linkage method was used to explore clustering patterns
among the samples and metabolites in urine. The ex-
pression patterns and a heat map of each variable were
generated using an average linkage hierarchical cluster-
ing program. High-correlation samples were positioned
near the top of the dendrogram, and highly similar me-
tabolites were assigned near the left of the dendrogram.
Other multivariate statistic analysis (principal compo-
nent analysis (PCA) and partial least squares discrimin-
ant analysis (PLS-DA)) were also performed using
Metabolyst 3.0. The PCA was used to visualize the data-
set and display similarities and differences. PLS-DA was
performed to sharpen the separation between groups of
observations, and to understand which variables carry
the class separating information.

Biomarker analysis and validation
Biomarker analysis was performed using statistical and
mathematical modeling methods to select the minimum
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number of metabolites to represent and explain differ-
ence between 2 treatments. A subset of metabolites was
manually selected to construct a classifier. One or more
metabolites can be selected based on their difference be-
tween 2 groups (e.g., VIP value, P value, fold change).
The classifier was then evaluated as a biomarker by ana-
lyzing the receiver operating characteristic (ROC), in-
cluding the ROC view, predicted class probabilities, and
cross validation (CV) prediction. The ROC analyses
were based on a linear SVM algorithm. To produce a
smooth ROC curve, 100 cross validations were per-
formed, and results averaged to generate the plot. Using
a probability view, a figure was generated to show the
average predicted class probabilities for each sample
among the 100 cross-validations. The classification
boundary was located at the center for a balanced sub-
sampling approach. Primarily, the effective sensitivity
and specificity was evaluated based on the value of the
area under the ROC curve (AUC), the sample

distribution in the probability view, and CV prediction
accuracy.
Biomarkers were validated by standard compound quan-

titative method using GC-TOF/MS. A standard curve was
generated using a 4 mg/mL stock solution of hippuric acid
(98 % assay; Sgima-Aldrich). The equipment used is
previously described. However the temperature procedure
differed and as follows: the initial temperature was
kept at 50 °C for 1 min, then raised to 300 °C at a rate of
20 °C/min, then kept for 6.5 min at 300 °C. The injection,
transfer line, and ion source temperatures were 280, 280,
and 220 °C, respectively. The energy was −70 eV in electron
impact mode. The mass spectrometry data were acquired
in full-scan mode with the m/z range of 30–600 at a rate of
20 spectra/s after a solvent delay of 4.93 min.

Related pathway characterization
Pathway characterization is used to expand metabolomic
analyses to understand the systems-level effects of

Fig. 1 A hierarchical clustering analysis for the significantly different urine metabolites. The patterns in each row were determined using an
average linkage hierarchical clustering program. The light blue boxes indicate an expression ratio less than the mean, and the dark red boxes
denote an expression ratio greater than the mean. Tree clusters and their shorter Euclidean distances indicate higher similarities. Similarity
between two metabolites is represented by branch height; thus, when a node is lower vertically, the subtree is more similar
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metabolites [11]. The relative concentrations of 31 sig-
nificantly different metabolites were imported into
Metaboanalyst to generate the metabolome view, which
integrates pathway enrichment analysis and pathway
topology analysis. In doing so subtle but consistent
changes among a group of related compounds may be
identified [12]. A global test was used in pathway enrich-
ment analysis to determine whether a group of metabo-
lites in one specific pathway is differentially expressed,
which shifts individual metabolite analysis to a group of
metabolites analysis [13]. Pathway topological analysis
was based on the relative betweenness and out of degree
centrality measures of a metabolite in a given metabolic
network to calculate the metabolites importance [14].
The pathway impact was calculated as the sum of the
importance measures of the matched metabolites nor-
malized by the importance of all metabolites in each
pathway [15]. The differential response in metabolites
between the two groups were further identified using
online databases, including the Kyoto Encyclopedia of
Genes and Genomes (KEGG), Bovine Metabolome
Database, PubChem Compound, Chemical Entities of
Biological Interest and Chemical Abstracts Service. Each
different metabolite was crosslisted with the pathways in
the KEGG; the top altered pathways were then identified

and constructed according to the potential functional
analysis.

Results
Metabolic profiles and hierarchical cluster analysis
The PCA and PLS-DA analyses of the GC-TOF/MS
metabolic profiles clearly show separated clusters in the
2D-PCA score plot between the AH and CS groups
(Additional file 1: Figure S1), suggesting that the GC-
TOF/MS-based urine metabolomics model can be used
to identify the difference between the two diets.
The relative concentrations of 31 significantly different

metabolites identified in the urine are shown in Fig. 1
with changes in the color intensity (from light blue to
dark red) on the heat map. Different subclusters con-
taining different numbers of samples in one diet fully
clustered together, indicating a clear and strong difference
between the AH and CS diets. Therefore, biomarker and
pathway analyses based on these 31 significantly differ-
ently metabolites are credible.

Analysis and validation of biomarker
Based on the individual AUC, fold change (FC), and
p-value, hippuric acid and N-methyl-L-glutamic acid
(NML-Glu) were selected as potential biomarkers

Fig. 2 Biomarker analysis results (ROC view). Statistical method to evaluate treatment effectiveness using selected represented metabolites. a
Probability view and b cross validation prediction of c 2 selected metabolites, hippuric acid and N-methyl-L-glutamic acid. CS = diet containing
corn stover as the main forage; and AH = diet containing alfalfa as the main forage
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because they exhibited the most significant difference
between the diets (Additional file 1: Table S1). The
biomarker analysis results for HUA and NML-Glu are
shown in Fig. 2. The AUC was equal to 1 (Fig. 2a), and a
clear separation and discrimination were observed be-
tween the CS and AH diets in the probability view
(Fig. 2b). An AUC close to 1 indicates a more effective
sensitivity and specificity. The average accuracy based on
100 cross validations was 1 (Fig. 2c) in this study. Having
an average accuracy close to 1 indicates a more valid CV
prediction. The concentration of HUA (mg/mL) in CS
group was significantly higher than that in AH group
(2.8282 vs. 0.0005; P < 0.01).
A significant negative correlation was observed between

milk yield and HUA concentration (R2 = 0.459, P < 0.01,
Fig. 3a). On the contrary, milk yield was positively corre-
lated with NML-Glu concentration (R2 = 0.652, P < 0.01,
Fig. 3b), suggesting that these 2 metabolites may serve as
candidates for future investigations into forage-related lac-
tation mechanisms.

Characterization and functional analysis of key metabolic
pathways
Seventeen pathways were obtained when the signifi-
cantly different metabolites were imported into KEGG.
After enrichment and pathway topology analysis of the
identified pathways, only 7 pathways showed an impact
value at the comprehensive level (Table 1): Tyr metabol-
ism; starch and sucrose metabolism; amino sugar and
nucleotide sugar metabolism; galactose metabolism; Phe,
Tyr and Try biosynthesis; purine metabolism; and gly-
cerolipid metabolism. Among these 7 pathways, Phe, Tyr
and Try biosynthesis exhibited the highest impact value
(0.50). When the statistical P values were further ad-
justed via the Holm-Bonferroni method for multiple
testing, only the Tyr metabolism exhibited significant
differences (P = 0.048, Table 1).
A comprehensive analysis of the P value and impact

value showed that the pathways that differed the most
were Tyr metabolism and Phe, Tyr and Try biosynthesis
(Fig. 4). The integrated key pathways and involved

b

Fig. 3 Correlation of milk yield and relative concentrations of hippuric acid (HUA), and N-methyl-L-glutamic acid (NML-Glu) in lactating cows,
2 panels were combined together in one image
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metabolites are shown in Fig. 5. For Tyr metabolism
pathway, 3 significantly different metabolites were char-
acterized: Tyr (VIP = 1.38, P = 0.02; FC = 2.84), 4-
Hydroxyphenylacetic acid (VIP = 1.35, P = 0.03; FC =
2.85) and gentisic acid (VIP = 1.21, P = 0.04; FC = 0.47).
Tyr was also involved in Phe, Tyr and Try biosynthesis.

Discussion
The key biomarkers, HUA and NML-Glu were successfully
investigated using GC-TOF/MS combined with biomarker
analyses and statistically validated. This suggests that these
2 metabolites may be used as biomarkers in urine from
dairy cows when corn stover replaces alfalfa hay.
The HUA is a potential marker for determining the

best type of goat feeding regimen [16]. HUA is an acyl
glycine formed from conjugating benzoic acid with gly-
cine in the liver [17] and is one of the five major nitro-
genous components in urine of dairy cows [18]. HUA
excretion is related to dietary concentrations of degrad-
able phenolic acids [19]. Forage contains high levels of
aromatic compounds, including HUA [20], which can be
partly degraded in the rumen. HUA is absorbed in the
rumen and intestines following an immediate conjuga-
tion before being transformed in the liver and excreted
in urine [21]. In the current study, significant higher
amount of HUA in CS group was validated by both stat-
istical analysis and standard compound quantitative
method. The greater HUA excretion in the CS-fed cows
partly resulted in greater nitrogen loss compared with
the cows fed AH. HUA excretion has been linked to lig-
nin digestibility [22]. Further work is necessary to valid-
ate HUA as a biomarker in dairy cow nutrition.
NML-Glu is a Glu derivative with a methyl group

added to the amino group and is an intermediate of me-
thane metabolism [23]. It can also regenerate Glu
through methylglutamate dehydrogenase. Glu is the
major milk protein component [24], accounting for
more than 20 % of milk protein and playing an import-
ant role in gluconeogenesis as a glucogenic precursor

[25]. The function of NML-Glu in the glutamate pool
warrants further investigation.
Based on the KEGG pathways, Tyr metabolism was

one of the 13 AA metabolism pathways (KEGG map
00350). As shown in Fig. 5, the altered Tyr metabolism
in dairy cows fed different quality forage mainly resulted
in Tyr degradation. In contrast, the alterations of Phe,
Tyr and Try biosynthesis pathway was attributed to Tyr
biosynthesis. Tyr is an aromatic AA and a precursor for
adrenalin, dopamine, norepinephrine and epinephrine,
which play an important role in the sympathetic ner-
vous system in animals [26]. In general, Tyr concen-
tration in blood depends on dietary Tyr content [27].

Fig. 4 The metabolome view map of significant metabolic pathways
characterized in urine for cows fed CS and AH. This figure aims to
find pathways significant changed based on enrichment and
topology analysis. The x-axis represents pathway enrichment, and
the y-axis represents pathway impact. Larger sizes and darker colors
represent greater pathway enrichment and higher pathway impact
values, respectively. CS = diet containing corn stover as the main
forage; and AH = diet containing alfalfa as the main forage

Table 1 Results from the urine metabolomic pathway analyses in cows fed CS and AH dietsa

Pathway Hitsb P value Home Pc Impact value

Tyrosine metabolism 3 0.003 0.048 0.145

Starch and sucrose metabolism 1 0.030 0.416 0.150

Amino sugar and nucleotide sugar metabolism 1 0.030 0.416 0.086

Galactose metabolism 2 0.097 0.875 0.119

Phenylalanine, tyrosine and tryptophan biosynthesis 1 0.138 1.000 0.500

Purine metabolism 1 0.152 1.000 0.0002

Glycerolipid metabolism 1 0.967 1.000 0.105
aCS = diet containing corn stover as the main forage; and AH = diet containing alfalfa hay as the main forage
bHits represents the number of metabolites in one pathway
cHome P indicates the statistical P values that were further adjusted using the Holm-Bonferroni method for multiple tests
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Tyr is referred to as a semi-essential or conditionally
indispensable AA because it only forms from Phe hy-
droxylation under certain condition [28]. During Tyr
catabolism, the carboxyl carbon is almost immediately
released as carbon dioxide, and the remaining portions
of the Tyr molecule become either acetoacetate or fu-
marate [29], which can be used to synthesize AA or
fatty acids.
Although Tyr is a non-essential AA, its synthesis

within the body depends on Phe availability. Half of the
Phe required for animals is used to produce Tyr. The re-
quirement for Phe is reduced by approximately 50 %
with a Tyr-rich diet [30]. The same feature was also
identified in a previous study on dairy cows [31]. Phe is
mainly hydroxylated to Tyr in the hepatic intracellular
pool, which is irreplaceable in Tyr biosynthesis. Phe is
an essential AA that must be supplied by dietary pro-
teins. Once it has entered the body, Phe may follow one
of three pathways: conversion to Tyr, incorporation into

cellular proteins, or conversion to phenylpyruvic acid
[32]. For dairy cows, valine and other branched-chain
AA may reduce tyrosine absorption [33], which may
limit conversion of essential AA, such as Phe, into
proteins.
The integrated metabolic pathways contain interaction

networks as well as related metabolites and provide in-
formation on nutritional intervention mechanisms [34].
This information extends beyond metabolic relevance
and effects through the pathways and network analyses
applied in the metabolomics analyses [35]. The detailed
construction of the altered Tyr metabolism; the Phe, Tyr
and Try biosynthesis pathways map; and the related me-
tabolites suggest that the target pathways yield marked
changes when forage quality varies. These biochemical
changes may be used to understand the effects of differ-
ent quality forages on lactation performance and provide
insight for future exploration of mechanisms and cow
nutrition.

Fig. 5 Key pathways altered by different forage quality and associated metabolites. The map was generated using the reference map from KEGG
and consisted of entry number of metabolites and pathways. Metabolites that significantly different are marked with yellow or red background
and display with column figure of relative concentration between 2 diets. Common metabolites are marked with blue background. CO represents
the entry number of the compound. CS = diet containing corn stover as the main forage; and AH = diet containing alfalfa as the main forage
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Conclusions
GC-TOF/MS technology and multivariate analyses were
used to to show significant changes in urine metabolites
and metabolic pathways between two diets containing
AH or CS as the main forage. The identified compounds
hippuric acid and N-methy-l-Glu may serve as a poten-
tial biomarker for discriminating between different for-
age quality. The Tyr metabolism and Phe, Tyr and Try
biosynthesis pathways showed the most variation when
corn stover replaced alfalfa hay. Insight into forage-
related changes in physiology and metabolism may aid
in developing strategies for better utilization of CS and
other low-quality forages in China.

Additional file

Additional file 1: Table S1. Ingredients of the experimental diets based
on corn stover and alfalfa hay. Table S2. Identification of significantly
different metabolites in urine between the CS and AH groups. Figure S1.
The 2-D PCA score map (a) and 2-D PLS-DA score map (b) derived from
the GC-TOF/MS metabolite profiles of urine for cows fed CS (red triangle)
and AH (green plus). CS = dietcontaining corn stover as main forage; and
AH = dietcontaining alfalfa and Chinese wild rye hay as main forage.
(DOC 145 kb)
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