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Abstract

Background

The growth and development of the posterior silk gland and the biosignttfieke silk core
protein at the fifth larval instar stage Bombyx mori are of paramount importance for gi
production.

k




Results

Here, aided by next-generation sequencing and microarry assay, we h&#emicroRNAS
(miRNAS), including 728 novel miRNAs and 110 miRNA/miRNA* duplexes, bé|t
posterior silk gland at the fifth larval instar. Target gene ptiedicyields 14,222 unigue
target genes from 1,195 miRNAs. Functional categorization dissihe targets into
complex pathways that include both cellular and metabolic processgscially protein
synthesis and processing.

Conclusion

The enrichment of target genes in the ribosome-related pathwagpteslithat miRNAs may
directly regulate translation. Our findings pave a way forhrtfunctional elucidation of
these miRNAs and their targets in silk production.
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Background

The silkwormBombyx mori is the most economically important holometabolous lepidopteran
and has recently became an experimental model for molecular eagyndl,2]. Its silk
gland is the most efficient protein synthesis machine amongrgdinisms, which makes
silkworm a desirable model for studying its mechanism. Asdlgest and most important
part of the silk gland, the posterior compartment is most atteasince it synthesizes the silk
core protein that determines the quality of silk cocoons. A recetggmic study, using two-
dimensional gel electrophoresis (2-DE) coupled with matrix{eskis laser
desorption/ionization—time-of-flight mass spectrometry (MALDI-TMB), has identified 93
major proteins in the silk gland, of which there are several phodptexyfibroin L-chain
and P25 isoforms [3]. The posterior silk gland of the fifth instar been further surveyed
systematically for the understanding of molecular basis andategy mechanism of the
posterior silk gland development and fibroin synthesis [4]. A recent transcrgpsomviey has
revealed a total of 10,393 active genes differentially expressediltiple silkworm tissues
on the third day of the fifth-instar larva, of which 412 and 109 are ugategl in the
anterior-middle and the posterior silk glands, respectively [5]. Thedengs all provide
basic data for studying the growth of the posterior silk glamtifédroin synthesis. However,
microRNAs (miRNAs)-based study has not been done for the stid glad its developing
and functionally important compartments albeit justifiable for necessity. [6-8]

As a large family of endogenous small non-coding RNAs, miRRr¥scommon regulatory
RNAs of eukaryotic organisms and play important roles in a watge of biological
processes under physiological and pathological conditions [9-14]. Bdapk of empirical
data, computational approaches have made initial contributions to m#Ridlgx inB. mori
[15-18], followed by next-generation sequencing efforts that profild&®NAs for different
developmental stages and tissues [19-22]. Nevertheless, specifaallsed study is still
necessary since the expression of miRNAs is largely temporal-4gatiab)].



Here, we report our miRNA profiling of the fifth-instar postersilk gland, using next-
generation sequencing and microarray technologies. We shov2@atut of 1,229 miRNAs
are novel and 430 of the total are identified in the third day of theenpmssilk gland
development. Our GO (Gene Ontology)-based pathway assignment prdhieleBrst
comprehensive categorization®fmori miRNAs in the posterior silk gland.

Results and discussion

Next-generation sequencing and data processing

Rapid growth of the silk gland occurs at the fifth instar stagd,the gland is comprised of
three distinct compartments: the anterior, the middle, and the posiéainds (Figure 1).
Compared with the other two parts, the anterior gland, albeilesmserves as a duct to
transport (spinning) silk proteins that form the cocoon. The middle glandupes
considerable quantities of sericins and the longest posterior giawd gapidly, synthesizing
a series of proteins including fibroin heavy and light chains fiusin P25 by exclusively
~500 posterior gland cells of the fifth instar larva. As faithes biosynthesis of fibroin is
concerned, the fifth instar stage can also be partitioned intpéwods: the rapid formation
and the massive secretion [26]. The third day of the fifth in38) ¢completes a division
during larval development and rapid cell growth occurs at this peribchef Based on data
from genome-scale expression profiling of the posterior silk glamésitbeen concluded that
gene expression profile from the fourth instar molting to thle fifstar day 8 before spinning
forms two clusters that is divided at V3 from the fourth moltmgvandering periods [4]. A
large amount of genes encoding the fibroin light chain, fibrohexamerintR2Scription
factors, structural proteins, glucose and other sugar transpamer proteins that aid in
hormone signal transduction are up-regulated in the posteriorlaiid Fom V1 to V5, and
are slightly down-regulated at the wandering stage [4,5]. Térverefchanges of gene
expression at the fifth instar may be responsible for growtrdamedlopment of the posterior
silk gland, especially various miRNAs that play regulatory sale post-transcriptional
control [27].

Figure 1 The silk gland from the fourth molting to the fifth instar day 8. The fifth-instar
silkworm larvag(A) and cocoorB). M4 to V8 represent nine consecutive days of the silk
glands developmental stages from the fourth molting larva to the fifth-lastae (V1 to

V8). a, the anterior silk gland; m, the region of the middle silk gland; and p, the postkrior si
gland.

The raw and processed data of all samples have been depositedlis §€fe Expression
Omnibus (GEO) [28] under accession number GSE 56380. From 93.2 milliorsggdce
reads ranging from 18 ~ 30 nt in length (Table 1, Additional fil&-igure S1), we first
examined the length distribution of small RNAs from ten libraaied found two extremely
high peaks in most libraries; one was around 20 nt and the other aroun¢hg8itibnal file
2: Figure S2). This result is consistent with the previous tepwahere the first peak was
proposed to represent miRNAs and the other was interpreted as |oR®&k-lke small
RNAs [21,22,29,30]. We subsequently categorized non-coding small RNAs anelddifem
according to Rfam database 10.0. The individual expression level df RMAs is very
similar across the 10 libraries (Additional file 3: Table S1g fdund that rRNAs and tRNAs
were the majority of all non-coding RNA categories, as theyaamwunted for the most
components of protein synthesis.



Table 1 Data summary of sequenced small RNAs based on DSAP

Q1 Q2 B1 B2 QB1 QB2 BQ1 BQ2 R1 J1i
Total reads 18707473 18633295 18556476 18499427 17947940 16942708 17449851 17905942 10508573 12079631
Cleaned sequence tags 901684 674947 810182 622202 633421 617616 857114 617471 1162861 816340
Reads in cleaned sequence tags 10044506 10693830 10790311 9085018 7461204 8113977 9405884 9159736 8614699 9822808
% reliable reads” 53.69 57.39 58.15 49.11 41.57 47.89 53.90 51.15 81.98 81.32
Unigue Sequence Clustel (USC) 901684 674947 810182 622202 633421 617616 857114 617471 1162861 816340
Matched ncRNA in Rfam 690 608 673 596 642 569 701 602 739 693
USC matched to Rfam 134580 97673 122849 105997 89704 92104 127959 101047 154898 145107
Reads matched to Rfam 2729256 2440852 2908825 2573860 1644409 2172466 2133486 2565135 1108916 1386447
% reads matched to Rfan 27.17 22.82 26.96 28.33 22.04 26.77 22.68 28 12.87 14.11
Matched miRNAs in miRBase 181 170 182 157 181 150 202 168 239 220
USC matched to miRBase 1411 1167 1216 927 1174 817 1643 1016 2540 2089
Reads matched to miRBase 406154 744285 540458 277369 486835 339576 544337 310026 1486269 1576622
% reads matched to miRNA: 4.04 6.96 5.01 3.05 6.52 4,19 5.79 3.38 17.25 16.05
USC Unmatched reads 765693 576107 686117 515278 542543 524695 727512 515408 1005423 669144

Note: #Percentage of reliable reads = (Number of reads in cleameehnee tags/Number of total reads)*100.



Known and novel miRNAs based on sequence data

After the removal of larger RNAs, we mapped the remainingsr¢48—30 nt) to miRBase
16.0 [31] using the deep-sequencing small RNA analysis pipelinARDISAP is a fast
web server specially designed to analyze known miRNAs gedefeden the Illumina
sequencing platform and yields satisfactory results [32,33].efart yielded 304 known
mMiRNAs (Additional file 4. Table S2), accounted for a large proporof miRBase 16.0
(http://www.mirbase.org/cgi-bin/browse.pl ), which are 20-27 nt in amEhave the highest
abundance (71.38%) in a range of 21-23 nt. We grouped them into 66 miRNAegamil
except for some undefined miRNAs (Additional file 4: Table S2 additfonal file 5: Figure
S3). Based on cross-species analysis, these known miRNAs aesl ¢har-68 species.
Among them, 40 families are widely conserved in insects and 2idarare unique td3.
mori. Moreover, 25 families are distributed among 14 classes/phylading both
invertebrates and vertebrates (Figure 2 and Additional file 6: Figure S4).

Figure 2 Crossspecies analysis of known miRNA familiesAll known miRNAs are
classified into 66 miRNA families and one undefined group. The known miRNAs are
distributed over 68 species; among them 40 families are widely conserved is arst@6
families are unique tB. mori.

The read count for different miRNA is rather variable (Additiofi@ 4: Table S2). For
instance, the number of reads for bmo-miR-263a is extremely higlorapared to other
miRNAs in all libraries; it may play a very important ratethe posterior gland development
and the result is in agreement with a previous report [20]. We falsod 50 pairs of
MiRNA/mMiRNA* duplexes, in addition to 24 miRNA*s without the correspondinBNAs.
Although most miRNAs are more abundant than their corresponding nfRkNiAere are
exceptional cases, where bmo-miR-10, bmo-miR-276, bmo-miR-305, bmo-miR-33, and
bmo-miR-34 are less abundant than their miRNA* counterparts. Sifimtiings have also
been reported in other deep sequencing experiments and are suspdmted tesult of
incorrect annotations in miRBase [34-36].

Having filtered the known non-coding RNAs, we predicted novel careii@NAS using
the mireap package [37] and classified 1,427 candidate miRNAs (Addlifitn&: Table
S3). Given the fact that there are many random inverted refppeated pseudo-hairpins) in
eukaryotic genomes and they can also fold into dysfunctional hampuhsundistinguished
sequences, we took extra cautions to classify non-conserved miRN&Asised mirident
classifier to identify the miRNA candidates, which has been regado achieves 99.2%
specificity and 97.6% sensitivity on a human test data set [38pl¥deevaluated two other
SVM-based prediction programs, Triplet-SVM and PmirP, together mitldent and using
miRbase datasets that include data from 24 insect species [38-iden¥iclassifier gave
rise to better results for insect pre-miRNA identificationour own hands [41]. Using
mirident classifier, we obtained 613 novel miRNAs, correspondirg@@unique sequences
after filtering pseudo-pre-miRNAs (Additional file 7: Table S3).

Microarray-based miRNA profiling

Since the third day of fifth-instar larva (V3) is a key éifpoint for silk synthesis and rapid
cell growth, we evaluated its miRNA expression profile using 3,07 brrdesigned probes
(Additional file 1: Figure S1 and Additional file 8: Table S4) that¢ classified into four
group: (1) 1,006 known miRNAs from miRBase, which consist of miRNAamfseveral



species, including silkworm (559 probes) and 10 flies (447 probes); (2) 1,48Gtedenovel
MiRNAs; (3) 425 probes based on data from four publications [17,19,22,42]; and (4) 219
control sequences. To ensure reproducibility, we double-gridded 841 sequeticesad
coverage of >5 from 1,427 custom-designed probes for each chip.

We used 16 chips (probe sets) for the study and normalized the diag2 imansformation.
Both technical (all R> 0.97) and biological repeats (aff R 0.8) showed consistent results
(Additional file 9: Figure S5 and Additional file 10: Table S5).rAleRNA-based microarray
experiments in general are reproducible [43-45], we readily fteh##30 mature miRNASs.
Among them, 239 are previously known and the remaining 191 include 19 cahserve
Drosophila and 172 novel ones (Additional file 11: Table S6). Of the 239 knowNAsIiR
187 are from a thorough collection from literature search andethaining 52 are directly
from the miRBase. These miRNAs showed different expressionmatenong the samples
and did not exhibit any obvious correlation to information sources. Fanicest bmo-
bantam, bmo-miR-12, bmo-miR-263a, bmo-miR-263b, bmo-miR-278, and bmo-miR-8 are
both literature-based and database collections but the miRBasetedlmiRNAs showed
stronger signals. The contrary results were found among bmo-teto-miR-1, bmo-miR-
100, bmo-miR-124, bmo-miR-137, bmo-miR-14, bmo-miR-252, bmo-miR-275, bmo-miR-
305, bmo-miR-307, bmo-miR-34, and bmo-miR-279c, where the literature-basectioak
showed higher expression levels (Additional file 12: Table S7).inégred that this non-
uniformity might be a result of different technical platforms.eQfiscussion point on this
study is the validation rate: only 172 novel miRNAs (~14%) from #guencing data are
confirmed in the microarray experiment. The reasons for such lonfirmation are
multifold. First, 430 mature miRNAs are detected on the third ddiftbfinstar but not on
the entire stage, where samples are collected and pooled froouttieihstar molting to the
fifth instar day 8 before spinning. The false negative resultsdioresof the miRNAs are
largely due to the dilution of the time-sensitive specific mi8Nover pooling [46,47].
Second, the marginal level of mMIRNA expression is pushing thetaetéicnit so that some
of the signals may not be consistently detected even when tieeesg@riments are repeated.
Third, sampling bias may be inherent from the sequencing approhehe wampling bias is
obvious for low copy transcripts [27,43].

There are 257 miRNA genes whose expression patterns have beendrepadaespond to
324 loci in theB. mori genome [22]. After the removal of redundant sequences, we found that
the two datasets shared 197 miRNAs (16 sequences showing discrep#my sequences
were not accounted for). Among these miRNAs, 75 genes showed poglanio expression

in the current study but have not been detected in the previous Gmmlersely, from 173
mMiRNAs identified previously in two public datasets for posterili-giand expression, 37
were negative in our study. In addition, seven (bmo-miR-2846, bmo-miR-2B&@amiR-
2853, bmo-miR-2854, bmo-miR-2858*, bmo-miR-2858, and bmo-miR-2859) out of 21
posterior-gland specific miRNAs defined previously were not dedeat our microarray
experiment (Additional file 13: Table S8). These results suggesptnaxperiment covered
most of theB mori miRNAs but inconsistency does exist, attributable to the differenc
between technical platforms.

Target gene prediction and pathway analysis

Combining results from both deep sequencing and microarray, we igeritjP29 miRNAs
expressed in the posterior silk gland in the period of the fourth-insté#ting to the fifth-
instar (day 8 before) spinning, and among which 728 are novel, named-asiBaPXxx-Xp



series (from No.1 to No.728 at Additional file 14: Table S9), and 14 reRNA/MIRNA*
duplexes (Additional file 15: Table S10). We also profiled 430 miRNokgHe third day of
the fifth-instar larva (Additional file 11: Table S6). We subsedyeptedicted potential
targets using miRanda v3.3a [48] and the effort yielded 14,222 targéte ientire stage,
corresponding to 1,195 miRNAs. The rest 34 miRNAs did not yield tgeyets due to low
scores (Additional file 16: Table S11). We associated 12,675 and 12,94i8gm=mngs to 423
known and 696 novel miRNAs in the third day of the fifth instar, respectively (Additfile
17: Table S12 and Additional file 18: Table S13).

We annotated all miRNA target genes based on GO analysioand that they are largely
involved in cell, cell part, binding, catalytic, cellular procesgtallochaperone, proteasome
regulator, and metabolic process, as opposed to the underrepresenpse, syyiaapse part,
and viral reproduction (Figure 3). This result suggests that miRN#&sregulate mostly the
expression of structural protein genes in the posterior gland tuse tinvolved in the
development of neural and immune systems. Furthermore, our GO aralythe target
genes of novel mMiIRNAs and those detected at the third day of the fifth instaedshaimilar
result to that of the total miIRNAs, except the absence of w@@loduction in biological
process terms and metallochaperone in molecular function term#ly Fasathe major silk
protein secretary organ, the posterior silk gland has an incraaesdme content [4,49,50],
and it has been reported that ribosomal proteins are abundantly edpireske final instar
and play key roles in modulating activity of ribosome [49,51]. Our resuifirmed this
observation.

Figure 3 GO analyses of the target genes predicted by miRanda in the posteriorksil

gland. We analyzed three groups of miRNAs: (1) V3, 430 miRNAs detected at the third day
of fifth instar; (2) Entire Stage, 1,229 miRNAs discovered at the periods frofattia

instar molting to the fifth instar day 8 before spinning, and (3) Novel, 728 miRNAs firs
detected in this study.

Based on further comparison of biological pathways among threeetfa{éise entire stage,
the novel miRNAs, and the V3 group), we showed that 5,871 out of 14,222 predigtdd tar
in the entire stage were involved in 302 KEGG pathways (Figure 4tiéwlali file 19: Table
S14). The other two sets of target genes shared a similét; kgsere 5,400 and 5,331 target
genes from the novel miRNAs and V3 group were mapped onto these paithespectively
(Additional file 19: Table S14; Figure 5). Furthermore, there weretd@gét genes mapped
to the ribosome pathway (Figure 6, Additional file 20: Figure 66 Additional file 19:
Table S14) and 92 target genes involved in protein processing of endaplasiciilum
pathway in the entire stage (Additional file 21: Figure S7 and thxbdil file 19: Table S14).
Since translation-level regulation of ribosomal proteins is atitior fibroin synthesis [4],
most of the target genes (107, 96 and 93 in the entire stage, the n@dh,nand the V3
group, respectively) were mapped to ribosome pathway for all tlateseds as compared to
other pathways, and these target genes almost covered all thergégmepathway (Figure 5,
Figure 6 and Additional file 20: Figure S6). These results atdithat miRNAs expressed in
the fifth instar of posterior silk gland showed strong regulatongtions on the silk protein
synthesis.

Figure 4 The number of miRNA target genes mapped on pathwayhe miRNAs detected
at Entire stage from the fourth instar molting to the fifth instar day 8 befareisgi




Figure 5 KEGG pathways mapped based on miRNA target genekntire stage, the target
genes of mMiIRNAs detected over the entire period from the fourth instar molting fifth
instar day 8 before spinning; Novel, target genes first predicted in this $tBdiarget genes
detected at the third day of fifth instar.

Figure 6 The ribosome pathway miRNA target genes detected in the entire period from the
fourth instar molting to the fifth instar day 8 before spinr{ftgand target genes first
detected in this studyB). Mapped pathways were highlighted in green.

Other involved pathways are also informative. First, 99 target gareeselated to RNA
transport pathway, and 47 target genes are mapped to RNA degnguitiway (Additional
file 19: Table S14 and Additional file 22: Figure S8). Nearly 90 andab§et genes are
involved in purine and pyrimidine metabolisms, respectively (Additiofeall®: Table S14,
Additional file 23: Figure S9 and Additional file 24: Figure S10heTesults indicate active
regulations of transcription and nucleotide metabolism. Second, 79 gerget are found to
be involved in oxidative phosphorylation pathway (Additional file 19: Ta®iel and
Additional file 25: Figure S11). The ATP production pathway may coordindth
nucleotide metabolic pathways for energy generation. Third, 66 andr88t tgenes are
related to ubiquitin mediated proteolysis and proteasome pathways;tnesggAdditional
file 19: Table S14 and Additional file 26: Figure S12). Since ubiquitoteptytic system
plays an important role in a broad array of basic cellular psesemcluding regulation of
cell cycle, modulation of the immune and inflammatory responses, otooitr signal
transduction pathways, development and differentiation, and these coprptesses are
controlled by specific degradation of a single or a subset oéipsof52], the discovery of
such a significant involvement is of importance. Fourth, we observeddt tenes mapped
to cell cycle pathway (Additional file 19: Table S14 and Additionial 27: Figure S13)
which suggests that these miRNAs may be regulators of celé.citchas been well
established that cell division only occurs during the embryonic denvednt, and the number
of cells in the posterior silk gland no longer increases throughotdrtred life [53]. Finally,
pathway analysis results showed highly consistency between #e dhtasets: the entire
stage, the novel miRNAs, and the V3 group.

Conclusion

From 10 small RNA libraries, we acquired ~93 million processadsreanging from 18-30
nt in length, identified 1,229 miRNAs (110 miRNA/miRNA* duplexes), and prdfi430
mMiRNAs at the third day of the fifth instar larva. We alsmurfd 728 novel miRNAs
(including 55 MIRNA/mMIRNA* duplex and 709 Bm-specific miRNAs [5Qur findings
expanded the collection &. mori miRNAs in miRBase and covered most miRNAs of the
posterior silk gland. Moreover, on the discovery of target genes [5iv83jredicted 14,222
targets matching 1,195 miRNAs, which are classified into mangortant pathways
including protein synthesis, energy supply, and cell cycle control. €3uits underscore the
key regulatory roles that miRNAs play in the fifth instar pdst silk gland for silk
production.



Methods

Silkworm rearing and sample preparation

For better miRNA profiling and eliminating strain-specific effe we selected six
domesticated silkworm strains (Q, Qiufeng; B, Baiyu; QB, QigferBaiyu; and BQ, Baiyu

x Qiufeng, R1, and J1) and reared them on fresh mulberry leavessstadéard condition.

We used three sets of samples according to genes expressionasiassis [4]: (1) Stage 1:

fourth instar molting to day 2 of fifth instar from Q, B, QB, an@)B(2) Stage 2: fifth instar

day 3 to day 8 before spinning; and (3) Entire stage: Stage 1 + 2 from R1 and J1. The samples
were collected daily and dissected and stored at low temperature in 0.1%5Biaples were
subsequently rinsed and stored in liquid nitrogen.

Small RNA library construction and solexa sequencig

Total RNA was extracted from the posterior silk gland witlezdlr reagent (Invitrogen,
Carlsbad, CA, USA) according to the manufacturer’'s instructions.niHBNA-seq, total

RNA of the desired size range (18-30 nt) was size-fractionated 1&i%0aPAGE gel and
ligated with to sequence adapters (T4 RNA ligase). After ifiegplfor 15 cycles, the
products were separated on agarose gels and the RT-PCR productseq@genced on the
lllumina platform (Beijing Genomics Institute or BGI, Shenzhen) [55,56].

Sequence analysis and microRNA prediction

Raw sequence reads of 35 nt in size were generated and unidseofdall-length small
RNA sequences>(8 nt) were analyzed with deep sequencing small RNA analysisngipe
(DSAP) (http://dsap.cgu.edu.tw/dsap.html). Unique reads matching silkwomacoding
RNA (rRNA. tRNA, sRNA, snoRNA and other non-coding RNA) depositetha NCBI
GenBank database and Rfam 10.0 were removed. The clean reads fralataaet were
matched to the known miRNA in miRBase 16.0 (http://microrna.sanger.adaikdentify
conserved miRNAs and annotated stem-loop sequences. After gteiehisig, the remaining
sequences were regarded as candidate miRNAs for further analysis.

To determine potential novel miRNAs, we identified candidate Mi&Nsing the mireap
program (http://sourceforge.net/projects/mireap), which is an #igordeveloped by BGI,
which can be used to identify known miRNAs and novel candidates with cahbaicpin

structure and sufficiently supported by sequencing data. In theemirestudy, mireap
parameters were set to match the condition of animal miRNAwifidation as follows: (1)
the length range of the miRNA sequence: 20-24 nt; (2) the maxiesakfrergy allowed for
an miRNA precursor: —18 kcal/mol; (3) the minimal common bases fmEtween miRNA
and miRNA*: 14 with no more than four bulges; and (4) the maximamasstry of

MiIRNA/MIRNA* duplex: 5 nt. Following miRNA prediction, secondary stures were
predicted by using the Zuker algorithm that evaluates hairpin irfigrnpotential

(http://rna.urmc.rochester.edu/rnastructure.html).

Microarray analysis

To determine comprehensive miRNA expression profiles on the thirdofldifth instar
larvae, we collaborated with LC Bio Co. Ltd (LC sciences, U8&Jeloped and designed



MiRNA probes. Considering that miRNA expression profiles may wadjfferent varieties
and genders [46], we collected both male and female silkwormsfinenstains (Q, B, QB,
and BQ) in duplicates. The small RNA fraction was extracted with Treagent (Invitrogen,
Carlsbad, CA, USA). To ensure the quality of the RNA, we uwetked RNA quality and
guantity with spectrophotometer and size-fractionated it using YMMiOfbcon centrifugal
filter (Millipore). After adding poly-A tails, hybridization (10g probe) was used was carried
out on auParaflo™ microfluidic chip (Atactic Technologies) [57]. Afteragine acquisition
(GenePix 4000B, Molecular Device; Media Cybernetics) and backgroemdbval, we
normalized the signals using a LOWESS (Locally-weighted Regme) method [58],
classified the data using a hierarchical clustering methddaserage linkage and Euclidean
distance metric, and visualized the results with TIGR MeVl{idle Experimental Viewer;
Institute for Genomic Research).

Target gene prediction analysis

Due to lack of available 3’-utr database, we first estimateditigenes from NCBI (release
date: Mar 30, 2006) and considered 1 kb as a suitable length foosnk®-utr. Then,
according to the annotation of silkdb2.0 (http://www.silkdb.org/silkdb), 1 kb segsieiter
the last exon of annotated genes were selected as target gesre féanally, we used
miRanda v3.3a (http://cbio.mskcc.org/microrna_data/manual.html) to preuitential
targets. The thresholds for candidate target sites were Set 840 andAG < —-20 kcal/mol
[48].

Gene ontology and KEGG pathways analysis

We analyzed the function of miRNA targets based on Gene Ontologygthrsearching
against InterPro and KEGG databases (http://www.genome.jp/kegglyy lreerProScan,
WEGO (http://wego.genomics.org.cn/), and UniProtKB (http://pir.getmwn.edu/pirwww/
search/blast.shtml).
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