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Protein-misfolding diseases, such as Alzheimer's disease, type 2 diabetes, Prion diseases, and Parkinson's disease,
are characterized by inflammatory reactions. In all these diseases, IL-1β (Interlukine-1β) has been shown to be an
important regulator, and themisfolded proteins are proved to be triggers of the release of IL-1β. Recently, several
reports demonstrated that the inflammasome activation is involved in the progress of themisfolded protein dis-
eases, and that the inflammasome can recognize pathogenic proteins leading to the release of IL-1β. In this re-
view, we discuss the role of inflammasome in the pathogenesis of misfolded protein diseases and the potential
of inflammasome-targeting therapeutic interventions in the management of these diseases.
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1. Introduction

The accumulation of misfolded proteins can cause diseases, known
as protein-misfolding diseases. They have in common abnormal protein
conformations leading to an irreversible change into a sticky conforma-
tion rich in beta sheets that make the protein molecules interact with
each other, with an abnormal tendency to aggregate [3,5,65]. The
resulting protein aggregates are organized in a cross-beta structure,
with specific tinctorial properties (binding to Congo red and thioflavin
S), higher resistance to proteolytic degradation and a fibrillar appear-
ance under electron microscopy (straight, unbranched, 10 nm wide fi-
brils) [65].

Protein-misfolding diseases can be divided into two groups depend-
ing on the localization of protein aggregation. The first group consists of
neuropathic diseases, which is characterized by protein aggregation in
the central nervous system, and includes Prion diseases, Alzheimer's
disease and Parkinson's disease. The second group or non-neurophathic
diseases are characterized by protein aggregation in the peripheral
tissues.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.lfs.2015.05.011&domain=pdf
http://dx.doi.org/10.1016/j.lfs.2015.05.011
sfs@zju.edu.cn
http://dx.doi.org/10.1016/j.lfs.2015.05.011
http://www.sciencedirect.com/science/journal/00243205
www.elsevier.com/locate/lifescie
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At least three models have been proposed to explain the mecha-
nisms throughwhich proteinmisfolding and aggregation lead to the de-
velopment of protein misfolding diseases [65]. The loss-of-function
model holds that the pathological condition is caused by the loss of nor-
mal activity of the protein, which is depleted duringmisfolding and ag-
gregation. The second andmorewidely acceptedmodel is gain-of-toxic-
activitymodel, according towhichmisfolding and aggregation results in
the acquisition of a toxic function by the misfolded protein. Several
mechanisms have been proposed for the toxic activity of misfolded ag-
gregates, including activation of an apoptotic signaling pathway, re-
cruitment of essential cellular factors, formation of ion channels and
the induction of oxidative stress. The third model, the inflammation
model, proposes that abnormal protein aggregates act as irritants and
cause a chronic inflammatory reaction that leads to cell death [65]. A
combination of these mechanismsmight be involved in the pathogene-
sis of some protein-misfolding diseases.

In this review, we focus on the proinflammatory activity of
misfolded protein through the review of the role of inflammasome acti-
vation in the pathogenesis of four protein-misfolding diseases, namely
Prion disease, Alzheimer's disease, Parkinson's disease, and type 2
diabetes.

2. The inflammasome

The inflammasome is a multiprotein complex which is essential for
IL-1β secretion and plays an important role in innate immunity [41].
The inflammasome comprises a germline-encoded pattern recognition
receptors (PRR), the adaptor molecule apoptosis-associated speck-like
protein containing a CARD (caspase activation and recruitment do-
mains, ASC), and the caspase-1 enzyme that cleaves pro-IL-1β. Activa-
tion of inflammasome produces active caspase-1, which cleaves pro-
IL-1β and pro-IL-18 into IL-1β and IL-18. However, before these proin-
flammatory cleaving, the mRNA expression of NALPs and IL-1β should
be upregulated by specific triggers, such as the stimulation of TLR4
(Toll-like receptor 4) by LPS (lipopolysaccharide), and this step is called
priming or signal 1. Following this are the assembling and activation of
the inflammasome which is called signal 2 [44].

Up to now, several inflammasomes have been identified,
including NALP1, NALP3, AIM2 and IPAF inflammasomes. The NALP1
inflammasome contains a CARD domain which can interact directly
with pro-caspase-5 [40] or pro-caspase-1 [16] without recruitment of
ASC. However, ASC has been reported to enhance NALP1 mediated
caspase-1 activation ex vivo [16]. Unlike NALP1, the NALP3 protein con-
tains a PYD (Pyrin domain) which can interact with ASC. The ASC har-
bors PYD and CARD domain, after interacting NALP3 via PYD, the
CARD domain recruits the CARD of pro-caspase-1, which makes the
NALP3 inflammasome (NALP3-ASC-pro-caspase-1) [58]. Similar to
NALP1, the IPAF protein only contains a CARD domain which can inter-
act directly with pro-caspase-1 without the recruitment of ASC [54]. All
of the three mentioned inflammasomes belong to the NOD-like recep-
tor family (NLR). The AIM2 inflammasome is the first identified non-
NLR family member which can form an inflammasome [39,58]. The
AIM2 inflammasome can recognize cytosolic DNA via its C-terminal
HIN200 domain, furthermore, the AIM2 protein can interact with ASC
and mediate caspase-1 activation. Among these inflammasomes, the
Table 1
NALP3 inflammasome in protein misfolding diseases.

Diseases Cytokine Inflammasome trigge

Prion disease IL-1β Fibril PrP

Alzheimer's disease IL-1β Beta amyloid

Type 2 diabetes IL-1β, IL-18 IAPP

Parkinson's disease IL-1 Alpha-synuclein
NALP3 inflammasome is the most-studied, and is involved with a num-
ber of diseases such asmetabolic disease [12] and inflammatory disease
[42,73]. Studies reported that misfolded proteins, such as Aβ (amyloid
β) [21], IAPP (islet amyloid polypeptide) [43], prion fibrils [61] and
alpha-synuclein [4] can lead to the activation of NALP3 inflammsome
(Table 1).

Several studies have focused on the molecular mechanism of
inflammasome assembly and activation, especially the mechanism of
NALP3 inflammasome activation. The NALP3 inflammasome can recog-
nize a diversity of stimuli and lead to inflammatory responses. Three
models have been put forward to explain themechanisms lying behind
NALP3 inflammasome activation [59]. The first model holds that ion
fluxes, particularly potassium (K+) efflux, act as a signal for NALP3
inflammasome activation. Inhibition K+ efflux by a high concentration
of K+ in the cell culture can abolish NALP3 inflammasome activation
in response to most inflammasome activators [25]. It is proposed that
ATP stimulates K+ efflux via purinergic P2X7 receptor, and leads to
the decrease of intracellular K+, which can be sensed by NALP3 [28]. A
recent study has suggested that K+ efflux is the common trigger of
NALP3 inflammasome activation by particulate matter [48]. In the sec-
ond model, the generation of reactive oxygen species (ROS) is believed
to play an important role in the inflammasome activation. Almost all
NALP3 activators, including particulate matter, increase intracellular
ROS production. Moreover, inhibition of ROS with specific scavengers
abolishes inflammasome activation in response to a range of NALP3 ac-
tivators [11]. Another research has revealed that thioredoxin-interacting
protein can bind toNALP3 in a ROS-dependentmanner, further indicating
the crucial role of ROS in inflammasome activation [79]. In the third
model, cathepsin B is considered to be a trigger of inflammasome activa-
tion. Particulate activators such as Aβ can destabilize lysosomal intact,
leading to release of cathepsin B, which can be recognized by NALP3
inflammasome. In addition, the cathepsin B inhibitor CA-074Me could
disrupt NALP3 activation induced by silica, MSU (monosodium urate)
and Aβ [1,13,21]. However, the function of cathepsin B may be through
an unidentified target, since NALP3 inflammasome activation was not af-
fected in cathepsin B deficient macrophages upon particulate stimulation
[11]. Up to now, no direct link between NALP3 and cathepsin B has been
reported.

3. Neuropathic diseases

3.1. The inflammasome in Prion diseases

Prion diseases, also known as transmissible spongiform encephalop-
athies, are fatal neurodegenerative disorders, characterized by brain
vaculation, neuronal cell death and microgliosis [60]. This group of dis-
eases can affect human and other mammalian species including bovine
spongiform encephalopathy in cow, scrapie in sheep, chronic wasting
disease in elk and Creutzfeldt–Jakob disease (CJD) in human. They are
caused by themisfolding of cellular prion protein (PrPC) into the patho-
logical isoform (PrPSc). Studies have shown that the misfolded protein
leads to activation ofmicroglia, and these in turn produce proinflamma-
tory cytokines and neurotoxic factors, including IL-1β, TNF-α and che-
mokine (C–C motif) ligand 3 (CCL3) [71]. Our research demonstrated
that the misfolded PrP fibrils could activate NALP3 inflammasome,
r Activated cell type References

Microglia Shi et al. [61]
Hafner-Bratkovič et al. [20]

Microglia Halle et al. [21]
Trendelenburg [70]

Macrophage Masters et al. [43]
Donath et al. (2011)

Microglia Codolo et al. [4]
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leading to caspase-1 activation and IL-1β release. Besides, the released
IL-1β could upregulate TNF-α and CCL3 expression after NALP3
inflammasome activation [61]. Similar findings were later reported by
other researchers [20]. Our work also identified the molecular mecha-
nisms at play in NALP3 inflammasome activation in response to PrP
fibril stimulation (Fig. 1). First, hyperosmotic extracellular K+ signifi-
cantly decreases PrP fibril-induced release of IL-1β through downregu-
lation of NALP3 expression, but K+ has no effect on regulation of ASC
expression. This result is consistent with previous findings which dem-
onstrated that IL-1β processing in microglia is regulated by multiple
pathways that differentially regulate NALP3 and ASC [33]. Secondly,
generation of ROS in response to PrP fibril stimulation also seems to
play a key role in NALP3 inflammasome activation, and ROS inhibitor
NAC was shown to significantly reduce the release of IL-1β, and block
NALP3 and ASC upregulation after exposure to PrP fibrils. Lastly, phago-
cytosis of PrP fibrils leads to lysosome destabilization, resulting in
NALP3 inflammasome activation. Inhibition phagocytosis and lysosom-
al acidification suppressed NALP3 inflammasome activation in PrP fibril
stimulated microglia [63]. It remains unclear whether these mecha-
nisms act in concert or independently.

We also found that NF-κB activation acts upstreamof NALP3, as inhi-
bition of NF-κB activation abrogates PrPfibril-inducedNALP3mRNAup-
regulation. This is consistent with the role of NF-κB as the key regulator
of pro-IL-1β synthesis. Recently, a research has demonstrated that A20
negatively regulates NALP3 inflammasome by suppressing NF-κB-
dependent production of NALP3 and pro-IL-1β [74]. It would be there-
fore of interest to investigate the relationship between A20 and NALP3
inflammasome in the context of Prion diseases.

3.2. The inflammasome in Alzheimer's disease

Alzheimer's disease (AD) is a neurodegenerative, progressive and
chronic disease characterized by dementia, memory loss and cognitive
impairment. Deposition of misfolded protein amyloid-β (Aβ) in the
brain is supposed to be a principal event in AD pathogenesis. Mounting
evidences show that multiple inflammatory cytokines, such as TNF-α,
IFN-γ and interleukins, are elevated in the brain of Alzheimer patients
[26]. In addition, inflammatory cytokines are also increased in the
Fig. 1. Schematic model of NALP3 inflammasome activation in response to misfolded protein s
efflux, lysosomal destabilization and ROS increase. Then, the activation of NALP3 inflammasom
peripheral blood and cerebrospinal fluid of Alzheimer patients. Studies
also indicate that interleukins, in particular IL-1β and IL-18, are the
main cause of the inflammatory process in the central nervous system
(CNS), both of which mediating the expression of other inflammatory
genes [56]. IL-1β can be released frommany cell types includingmacro-
phages,microglia andneurons [8] andmany types of inflammasome, in-
cluding NALP1, NLRC4 and NALP3 inflammasome, were shown to be
involved in the inflammasome-mediated release of IL-1β in the CNS
[70]. Aβ was the first misfolded protein to be shown to activate
inflammasome in the CNS. Specifically, Aβ activated caspase-1 of LPS-
primed microglia, leading to the release of IL-1β, and this response
was dependent on NALP3 inflammasome activation [21]. The phagocy-
tosis of fibril Aβ can cause endosomal rupture and the release of cathep-
sin B in the cytosol, and this endosomal rupture was proved to be an
important endogenous signal for NALP3 inflammasome activation.

There is a relationship between neuroinflammation and the progress
of AD. Higher IL-1β in the CNS can exacerbate AD pathogenesis and af-
fect synaptic plasticity and long-term potentiation [52]. Besides, inhibi-
tion of IL-1β signaling has proved beneficial effects on ADmousemodel.
NALP3 inflammasomeactivationbyAβ in CNS is necessary for caspase-1
cleavage and IL-1β release and subsequent inflammatory response;
however, the role of NALP3 inflammasome activation in AD in vivo is
still unclear. A recent study conducted on APP/PS1mice, which develop
similar symptoms of AD, indicates that NALP3 inflammasome activation
has a critical role in the pathogenesis of AD [22]. The study showed that
APP/PS1/NALP3−/− and APP/PS1/caspase-1−/− mice were largely
protected from loss of spatial memory and other sequelae compared
to APP/PS1 mice. The deficiency of NALP3 reduced caspase-1 activation
and IL-1β secretion and enhanced Aβ clearance. Furthermore, NALP3 or
caspase-1 deficiency resulted in a skew of microglia activation towards
an M-2 like activated state, as markers of alternative activation of mi-
croglia of the M2 type such as “found in inflammatory zone 1 (FIZZ1)”
and arginase-1 are upregulated, and hallmark of classical activation
M1 type-NOS2 are downregulated [22]. This is consistent with our
previous study which demonstrated that inhibition of NALP3
inflammasome by Cytochalasin D reduced classical activation of mi-
croglia upon exposure to Aβ and PrP fibrils [61,62]. It has been
proved that activation of NALP3 inflammasome induced M1 type
timulation. The misfolded proteins can set fire to microglial NALP3 inflammasome via K+

e leads to caspase-1 activation and IL-1β release.
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activation of microglia and resulted in the clearance of Aβ, but acti-
vation of M2 type of microglia could ultimately reduce Aβ deposition
and protect against synaptic dysfunction [62].

It should be noted that the cleavage of IL-1β is just one aspect of
NALP3 inflammasome activation, and that inflammasome dependent
pyroptosis in AD is still at debate. A recent research has demonstrated
that NALP1 inflammasome is one of the key pathways responsible for
Aβ neurotoxicity. The NALP1 expression was upregulated in APP/PS1
mice, and this increase in NALP1 levels in neurons was due to Aβ accu-
mulation. In addition, the increase in NALP1 expression activated
caspase-1 signaling and led to neuronal pyroptosis and inflammation
cytokine release [68]. Therefore, further studies are needed to clarify
the nature of correlation between NALP3 inflammasome and other sig-
naling pathways involved in AD.

3.3. The inflammasome in Parkinson's disease

Parkinson's disease (PD) is the secondmost commonneurodegener-
ative disease after Alzheimer's disease (AD)with a prevalence of 0.5–1%
among people older than 65 years of age [69]. It is characterized by the
death of dopaminergic neurons in the substantia nigra (SN) pars
compacta [23] and presence of intraneuronal aggregated inclusions
called Lewy bodies [66].

As one of the neuropathologic hallmarks of PD, Lewy body is mainly
composed of an amyloid polypeptide known asα-synuclein [49], which
was shown to share intriguing similarities with other amyloid polypep-
tides [3,49]. The accumulation of α-synuclein has also been reported in
peripheral tissue in T2DM mice, suggesting a possible amyloid-based
link between the two diseases.

It is established that the inflammatory process plays a crucial role in
the pathogenesis and/or progression of PD. Extracellular α-synuclein
has been shown to be taken up by neuronal and microglial cells in cul-
ture, although the nature of the mechanism involved is still controver-
sial [37]. α-Synuclein is released early in the disease and, acting as an
endogenous disease-related signal, it activates microglia to release
pro-inflammatory molecules, such as TNF-α and IL-1β, which are detri-
mental to dopamine neurons [17,38].

A recent study has demonstrated the involvement of NALP3
inflammasome activation inα-synuclein-mediatedmicroglia activation
[4]. Specifically,fibrillarα-synuclein induced synthesis of IL-1β, through
TLR2-dependent pathway, and its phagocytosis resulted in increased
ROS production and cathepsin B release into the cytosol leading to
NALP3 inflammasome activation [4].

4. Nonneurophathic diseases

Protein aggregation diseases are not exclusive to the central nervous
system, and can appear in peripheral tissues as well. Examples of
protein misfolding diseases that appear in peripheral tissues include
type 2 diabetes, inherited cataracts, some forms of atherosclerosis,
hemodialysis-related disorders, and short-chain amyloidosis. Our
focus here is confined to the role of inflammasome in type 2 diabetes.

4.1. The inflammasome in type 2 diabetes

Type 2 diabetes mellitus (T2DM) is an auto-inflammatory disease
induced by a metabolic disorder. It is characterized by a reduction in
the ability of insulin to stimulate glucose utilization, insulin resistance
and inadequate pancreatic β-cell insulin secretion in response to hyper-
glycemia [7,10]. Elevated level of IL-1β and limited beta-cell function
are two primary predictors for the development of T2DM [75].
Pioneering studies have demonstrated the contribution of NALP3
inflammasome in the pathogenesis of T2DM. Specifically, it was
shown that the genetic deletion of NALP3 and ASC in high-fat diet fed
mice results in improved glucose tolerance and enhanced insulin sensi-
tivity [67,72,76]. Lee et al. demonstrated the specificity of the NALP3
inflammasome in inducing inflammation originating from myeloid
cells of drug-naïve diabetic patients [35].

Metabolic stress due to chronic hyperglycemia stimulates
inflammasome mediated production of proinflammatory cytokine, IL-
1β, which in turn activates signaling pathways that result in pancreatic
β-cell death and dysfunction [14,18,47]. Fatty acids, glucose, and islet
amyloid polypeptide (IAPP) have been put forward asmetabolic danger
signals that possess the capacity to activate the inflammasome and
stimulate IL-1β production in T2DM patients [10].

IAPP is a peptide of 37 amino acids produced by pancreatic beta cells
and forms amyloid deposits in the pancreas during T2DM in humans
[43]. Masters et al. [43] have shown that IAPP has the ability to activate
the NALP3 inflammasome in dendritic cells or macrophages primed
with TLR4 agonist such as LPS or minimally modified LDL (mmLDL). In-
terestingly, the soluble oligomers of IAPP rather than the mature amy-
loid fibrils seem to be the culprit of IAPP-mediated inflammasome
activation. As in amyloid-induced inflammasome activation, IAPP driv-
en NALP3 inflammasome activation required ROS, cathepsin B, and
the phagocytosis [43].

Pancreatic islets, macrophages and dendritic cells may all be sources
of IL-1β in the pancreas. Although beta cells can produce IL-1β in re-
sponse to IAPP stimulation, macrophage is likely to be the dominant
IL-1β-producing cell in pancreatic islets. Expression of IAPP has also
been reported in the gastrointestinal tract and sensory neurons [77],
suggesting extra pancreatic involvement of IAPP in inflammasome acti-
vation during T2DM.

Importantly, IAPP seems to provide signal 2 for inflammasome
activation in T2DM patients. Indeed, IAPP lacks the ability to drive
IL-1β mRNA expression, yet robustly promotes NALP3-mediated
caspase-1 activation. T2DM related metabolic stress due to elevated
free fatty acids may account for priming signal 1 necessary for IL-1β
mRNA upregulation.

Elevated circulating level of free fatty acids is one of the hallmarks of
type 2 diabetes [30]. Owing to their ability to bind and activatemembers
of the TLR-family in vitro [36], saturated fatty acidsmay provide thefirst
signal needed for IL-1β production though induction of IL-1β gene tran-
scription. Interestingly, expression of IAPP by the pancreatic beta cell
line MIN6 cells is activated by saturated fatty acid palmitate [77],
highlighting the potential contribution of fatty acids in boosting pancre-
atic IL-1β production.

High glucose levels may also be involved in providing the priming
signal for transcription of IL-1β by activation of thioredoxin-
interacting protein (TXNIP), a protein that acts as an endogenous in-
hibitor of the ROS scavenging protein thioredoxin [45,51]. Zhou et al.
[79] have shown that, upon activation, TXNIP is able to directly inter-
act with NALP3 in a ROS-dependent manner, leading to activation of
caspase-1 and processing of IL-1β in pancreatic islets. However, the
role of TXNIP was not evident in IAPP-induced NALP3 inflammasome
activation [79].
5. Potential and challenges for therapeutic interventions

As shown above, there is a growing body of evidence that
inflammasome activation is a key feature in the pathogenesis of protein
misfolding diseases, which suggests that pharmacological strategies
targeting inflammasome constituents or inhibiting its final product,
may be therapeutically useful in treating or preventing protein-
misfolding diseases.

As the final product of the inflammasome activation, IL-1β seems to
be themost obvious target for inflammasome-targeting therapeutic ap-
proach. Inhibition of IL-1β is currently a therapeutic strategy in a broad
spectrum of diseases [9]. So far, three agents directed against IL-1β have
been approved for the treatment of inflammatory diseases: the IL-1 re-
ceptor antagonist anakinra, the soluble decoy receptor rilonacept (a hy-
brid molecule consisting of the extracellular portion of the IL-1 receptor
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and the Fc domain of human immunoglobulin G1), and the neutralizing
monoclonal anti-IL-1β antibody canakinumab [15,50].

The blockade of IL-1β activity with anakinra or canakinumab in pa-
tients with T2DM has shown a remarkable clinical improvement in gly-
cemic control and beta cell function in parallel to a decrease in systemic
markers of inflammation [2,31,32,55,64]. Moreover, the investigation
of the effect of rilonacept on beta-cell function in animal models
has shown that it prolongs survival of transplanted pancreatic islets
to type 1 diabetic NOD mice [57].

IL-1β targeting may also be a reliable target for protective therapies
in neurodegenerative diseases. In a study that highlights the potential
therapeutic benefit of IL-1β targeting in Alzheimer's disease, blocking
IL-1 signaling with an IL-1R blocking Ab in a mouse model of
Alzheimer's disease significantly altered brain inflammatory re-
sponses, rescued cognition, attenuated tau pathology, and restored
neuronal β-catenin pathway function [29]. However, these results
need to be interpreted with caution, as the pleiotropic functions of
IL-1β make it difficult to predict the net therapeutic effect of
targeting IL-1β in the brain. In a recent review of the therapeutic ef-
fect of IL-1β targeting in Parkinson disease, Leal et al. suggest that the
functional effect of IL-1β depends on the duration and dose of its ex-
pression on the substantia nigra (SN) pars compacta in patients with
Parkinson disease, and that an in-depth analysis to identify down-
stream mediators of the toxic effects of IL-1β in the SN is needed to
spare the possible neuroprotective effect of these cytokines opera-
tive in the patients at the time of treatment, and to increase the prob-
ability of efficacy in a clinical setting [34].

Alternative potential therapeutic strategies consist of targeting up-
stream constituents of NALP3 inflammasome, including caspase 1 and
ASC. Three therapeutic agents that inhibit caspase-1 have been de-
scribed, namely Pralnacasan, VX-765, and parthenolide. Parthenolide
is a sesquiterpene lactone isolated from the extracts of Mexican-
Indianmedicinal herb (Tanacetumparthenium), and has shown promise
in the treatment of various inflammatory conditions. In addition to its
anti-NF-κB activity, it inhibits the activity of multiple inflammasomes
by directly inhibiting the protease activity of caspase-1 through alkyl-
ation of critical cysteine residues [27].

Pralnacasan and VX-765 are peptide based caspase-1 inhibitors [53].
Pralnacasan was shown to significantly increase insulin sensitivity in
obese mice [67], and to reduce the development of cardiomyopathy in
a rat model of diabetic cardiomyopathy [78], whereas VX-765 was test-
ed for the treatment of partial epilepsy, with apparent success [9].

Although activated caspases have been detected in the brains of AD
and PD patients [19,24,46], the exact role of caspase-1 in the progres-
sion of neurodegenerative diseases is still unclear, and as a result, the
use of caspase inhibitors as therapeutic agents in neurodegenerative
diseases will prove difficult until the mechanisms behind disease pro-
gression are elucidated.

Finally, the recent identification of ASC inhibitors provides a promis-
ing therapeutic strategy for the management of NALP3 activation-
related diseases. CRID CP-456,773 (also known CRID3), is a member of
the recently identified class of diarylsulfonylurea containing com-
pounds called Cytokine Release Inhibitory Drugs (CRIDs), and was
shown to inhibit NALP3 by preventing ASC oligomerization [6].

Notwithstanding the promising therapeutic perspectives the contin-
uous advances in inflammasome research are opening, the manage-
ment of misfolding protein diseases through inflammasome inhibition
must be considered with caution. Indeed, inflammasome inhibition
may also result in reducing the ability to fight infection, since
inflammasome activation is involved in immune response to several in-
fectious diseases.

6. Conclusion

Recent reports related to the role of inflammasome activation in the
pathogenesis of protein misfolding diseases helped to elucidate the
molecularmechanisms lying behind the inflammatory process associat-
edwith their progression, and paved theway for the exploration of new
therapeutic targets for the management of this group of diseases.

However, many questions still need to be answered. For example,
the relevance of inflammasome activation in the onset and progression
of misfolding protein diseases in natural conditions still remains to be
determined since most of the reported findings have been found in in-
vitro experiments. More works are also still needed to elucidate the re-
lationship between inflammasome activation and other pathological
process associated with the aggregation of misfolded protein, such as
cell death.

Finally, most of works have so far focused on the role of NALP3
inflammasome. It will be of interest to investigate the involvement of
other types of inflammasome in misfolded protein-induced inflamma-
tion and the existence of possible redundancy between them.
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